
Wireless-Transparent Sensing

Makoto Suzuki Chun-Hao Liao Sotaro Ohara Kyoichi Jinno Hiroyuki Morikawa
Research Center for Advanced Science and Technology, The University of Tokyo, Japan

{makoto, liao, sotaro, jinno, mori}@mlab.t.u-tokyo.ac.jp

Abstract
Even after decades of efforts, wireless sensor networks

(WSNs) have not gained huge momentum as people ex-
pected. The discussions with researchers and engineers in
other fields make us believe that the essential problem is
the lossy, unstable, and opaque nature of wireless networks
rather than the power consumption or throughput problems.
To tackle this key problem, we propose the concept of
Wireless-Transparent Sensing that is qualified by the follow-
ing conditions. First, collected data should be easy-to-use,
similar to data collected by wired instruments, i.e., sampling
timing should be aligned, and no data losses should occur.
Second, the sensor network must be simple and responsive
so that it can be managed as easily as wired instruments.
Third, the system should sustainably deliver decent perfor-
mance under diverse circumstances so that users do not have
to choose different protocols to meet traffic demands.

To realize and verify the concept, we have developed
WTSP (Wireless-Transparent Sensing Platform) with two
characteristics of slot scheduling based on the concurrent
transmission flooding. First, the sink node schedules slots
on the fly; only several slots are determined within a sched-
ule packet, and additional schedule or sleep packets are dis-
tributed once the distributed schedule is completed, making
scheduling very flexible. Second, the scheduling is service-
driven; scheduling is delegated to upper-layer services and
each service directly makes a schedule, which allows the sink
node to predict communication demands accurately. Us-
ing a large-scale testbed, we show that WTSP satisfies the
above three conditions in many situations, and surprisingly
outperforms or performs comparably to state-of-the-art col-
lection protocols from the perspective of energy efficiency.
In addition, we share experiences of three real-world appli-
cations with different requirements, namely tomato green-

! !

Figure 1. Data collected from a wired instrument (left),
and data collected from typical WSNs (right). With
WSNs, sampling timings are not aligned among the sen-
sors, and data losses occur frequently.

house monitoring, structure monitoring, and wireless camera
networks, to reveal the practicality of the platform.

1 Introduction
The performance of wireless sensor networks (WSNs) has

improved significantly, yet most researchers and engineers in
many fields have not widely adopted WSNs. They choose
dependable wired instruments despite the fact that WSNs
are easily deployable. We discussed the differences between
WSNs and wired instruments with collaborative researchers
of civil engineering and agriculture. Through the discussion,
we found that performances such as power consumption and
throughput are seldom direct concerns. They have little to
complain regarding the performance of state-of-the-art pro-
tocols. What makes them hesitate to use WSNs is the lossy,
unstable, and opaque nature of wireless.

To overcome this situation, we propose the concept of
Wireless-Transparent Sensing that is qualified by the follow-
ing three conditions:
• Transparency for data usage: Sampling timing syn-

chronization and end-to-end retransmission. Most
WSNs generate lossy and unsynchronized data as
shown in Figure 1. In many application fields, analysis
methods for lossy data are not established, and users are
not accustomed to such sensor data. Most WSNs do not
incorporate these schemes though they are beneficial in
a variety of applications ranging from low data-rate data
center monitoring [22] to high data-rate volcano moni-
toring [28].

• Transparency for operation: Simplicity and respon-
siveness of networks. When disorder happens, identi-
fying and fixing the cause are difficult because mecha-
nisms inside WSNs are hard to understand [32]. Users

66

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4

must take care of many causes such as congestion,
hidden terminal problems, and inter-protocol interfer-
ence [19] during the deployment and operation of typi-
cal WSNs. Also, it takes quite a while until users’ treat-
ments such as placing more relay nodes are reflected,
making the deployment and operation difficult.

• Transparency for development: Adaptability of data
collection. As the demands on WSNs are diverse, many
protocols are optimized for different metrics such as
power consumption [26] or throughput [27]. Choosing
an appropriate protocol based on accurate understand-
ing of the requirements is necessary in conventional
WSNs, making it difficult to develop systems that de-
liver a decent quantity of sensor data.

By satisfying these conditions, wireless becomes trans-
parent in the following sense. First, users can use resultant
data in the similar way they are accustomed to analyzing.
Second, users can deploy a sensing system and fix problems
for themselves without deep consideration of the complex
nature of wireless networks. Third, users can develop a sens-
ing system without an accurate understanding of the traffic
requirements and protocol characteristics.

To realize the concept, we have developed WTSP, a
Wireless-Transparent Sensing Platform. WTSP achieves
simplicity, end-to-end retransmission, responsiveness and
adaptability by (i) adopting CTF-based networks, (ii)
scheduling slots with high flexiblity, and (iii) predicting com-
munication demand accurately. CTF stands for the very
efficient flooding scheme recently proposed by Ferrari et
al. [14]. CTF has many unique characteristics among exist-
ing wireless communication techniques. Specifically, CTF
can achieve time synchronization with a very simple mecha-
nism; CTF can spread a packet to the whole network within
10 ms even in a several-hop network; and CTF does not in-
cur congestion in principle [12]. These characteristics reduce
considerable complexity of the networking mechanisms.

The sink node performs on the fly (OTF) scheduling to
ensure the flexibility. In WTSP, CTF synchronizes a net-
work, and time is divided into slots whose lengths are sev-
eral tens of milliseconds. The sink node communicates with
non-sink nodes in a request-response manner continuously.
The sink node requests with a control packet, which speci-
fies the schedule of the following several slots, and non-sink
nodes reply in accordance with the control packet. Right
after the current schedule is completed, the sink node dis-
tributes a new control packet if further communications are
necessary, or distributes sleep packets otherwise.

Moreover, in order to predict the communication de-
mands accurately, we designed the scheduling as service-
driven. WTSP is designed in a layered fashion and con-
sists of a super scheduler called ctfnetd and four network
services: versatile collection, stream-oriented dissemination
to issue user commands, bulk dissemination for reprogram-
ming, and ping for a quick reachability check. ctfnetd ar-
bitrates network services, and network services have their
own slot scheduler. This isolation makes it possible to de-
sign each of the schedulers independently.

The principle of the scheduling offers great benefits. For

example, the sink node assigns slots in a row for maximizing
collection throughput when the traffic demand is high, and
instructs non-sink nodes to sleep for ensuring energy effi-
ciency when there is no traffic demands. Also, if a packet
is lost, the sink node can request a retransmission at the
next schedule. We show the software architecture of WTSP,
and intuitively illustrate how the scheduling contributes to
achieving the above conditions in §2. §3 describes ctfnetd,
and §4 explains the design of each network service.

Sampling timing becomes problematic when CTF is ap-
plied for high-rate sampling applications [28, 21]. Tasks are
delayed for a nondeterministic time because CPU monopo-
lization for several milliseconds is required for CTF’s tim-
ing constraints, which affects the sensing quality. WTSP
solves this by applying modern hardware peripherals of sen-
sors and microcontrollers as described in §5. This enables
high-accuracy sampling and wireless communication con-
currently such as data collection and network management.

We evaluate WTSP using an approximately 100-node
testbed [4] in §6. The representative results are as follows.
• WTSP achieves lossless data collection in various situa-

tions where 94 nodes send data every 10 s, and 25 nodes
send data every 1 s, and so on. From the perspective of
energy efficiency, WTSP outperforms or performs com-
parably to LWB [12] and ORPL [8]. In addition, the
throughput of WTSP reaches 1,600 B/s; it is compa-
rable with the state-of-the-art high-throughput reliable
collection protocol [10].

• Reprogramming with WTSP is sufficiently quick; it
takes 58.3 s in average to reprogram all the nodes.

• WTSP provides high-rate (100 Hz) synchronized sam-
pling with a low jitter of 100 us during communication.

From these evaluations, we find that WTSP is suitable for not
only dynamic high-throughput applications but also static
low-rate applications because the easy-to-use sensor data and
the built-in network management tools are obtained at the ex-
pense of a small energy overhead.

To validate the practicality of WTS and WTSP, we devel-
oped and deployed several real-world applications as demon-
strated in §7; specifically, tomato growth monitoring using
light intensity sensors with 84 nodes; structure monitoring
of civil infrastructure in a 360 m-long elevated bridge with
a six-hop, 61 node-network; and, wireless camera networks
with ten nodes, which convey JPEG files.

Versatility oriented routing-based protocols such as Con-
tikiMAC [10] and Orchestra [9], and CTF-based wireless
network protocols such as LWB [12], Virtus [13], Splash [6],
and Pando [7] have been proposed. We review the related
works in §8, and §9 concludes this work.

2 Overview
In WTSP, time is divided into time slots long enough for

one flooding over the network as in LWB and Virtus. The
slot length is fixed, and one second is divided into 32 slots
by default (the slot length is 31.25 ms). At most one CTF
is performed in each slot, and a sender and the packet to be
transmitted in each slot are determined by the sink node.

67

!"#$%"& '()*%+,(!-%&).%+/

0%+(1"2.%
!3..%!"23$

4).5
&2((%62$1"23$

7**.2!1"23$7**.2!1"23$
819%+

:"+%16;
3+2%$"%&,

&2((%62$1"23$

<=>,?+2@%+

A%*+3B+1662$B

*2$B

:-%..

C%"D3+5
:%+@2!%

Figure 2. Software Architecture of WTSP

!"#$

% % % % % % % % % % & & & & & & & & & & ' '

((% & ') * + , - . (% & ') * + , - . (% & ') * + , - . (%

)

-

%&

/

012$342 15#410

012$342 15#410

64#

078#"5$ 9:;< 7$=>$0?$30>@6$A

012$342 15#410

Figure 3. Control Packet Structure

Here, we show the software architecture of WTSP and
the operation to illustrate that on-the-fly and service-driven
scheduling on CTF is a key to achieving the conditions.
2.1 Software Architecture

Figure 2 shows the software architecture of WTSP. WTSP
employs a super scheduler called ctfnetd on a CTF driver,
and network services sit atop ctfnetd. Four network ser-
vices are implemented. Versatile collection is used to col-
lect data from sensor nodes. Stream-oriented dissemination
is used to disseminate user commands such as the start or
finish of sensing over the whole of the network. Bulk dis-
semination is used for large-data dissemination like wireless
reprogramming. ping is used when users want to verify the
reachability between a specified node and the sink node.

ctfnetd and network services collaboratively perform
slot scheduling and power management as follows.
• Scheduling: ctfnetd of the sink node polls each net-

work service to check the existence of communication
demands in the order of priority. If there is at least
one network service that has a communication demand,
ctfnetd selects the network service whose priority is
the highest. Then, the selected network service makes
and distributes a control packet, which specifies the
schedule of the following several slots.

• Power management: If there are no communication
demands from any network services, ctfnetd of the
sink node polls each network service about the next
wake-up slot, and selects the earliest slot as the next
wake-up slot. Then, the sink node distributes sleep
packets indicating the wake-up slot and the start-of-
sleep slot. If sleep packets are lost, the power con-
sumption of the nodes severely increases. To address
this problem, multiple sleep packets are sent for a single
transition to the sleep mode. If a node receives at least
one sleep packet, the node can enter the sleep mode.

A control packet includes information of a ns_type field
(that indicates a service in use), nodeid fields (that indicate
transmitters), and option fields (that indicate what packets

should be transmitted), as shown in Figure 3. The proto-
cols of these network services are based on request-response;
the sink node requests non-sink nodes using ns_type and
option fields as arguments, and non-sink nodes respond to
this in the assigned slots. A control packet does not have a
length field; nodes calculate the slot number using the length
field of IEEE 802.15.4 standards.

Non-sink nodes operate as instructed with control packets
they received from the sink node. When a node is assigned
a slot, the node determines a packet to transmit in the slot
using the corresponding option field. If the node does not
have a corresponding packet, it transmits a packet called the
null packet, which has no payload.
2.2 Protocol Operation

Figure 4 illustrates WTSP’s operation, and how WTSP
deals with packet losses, bursty traffic, and complex traffic
with data dissemination in a three-node network including
a sink node. Sender, Packet Type, Packet Header, and Loss
Node in Figure 4 stand for a sender node in the slot, a type of
the packet, the header information of the packet, and nodes
that cannot receive the packet, respectively.

For illustrative purpose, the maximum entries of a con-
trol packet, time synchronization interval, and redundancy of
sleep packets are set to 3, 5 s, and 2, respectively (by default,
they are 10, 30 s, and 5, respectively). Figure 4 does not il-
lustrate the synchronization process of the bootstrap signal
because it is the same as for LWB and Virtus.

Basic operation: Slots 1 to 5 show the basic operation
of WTSP. The sink node (Node 1) requests Nodes 2 and 3
to transmit a packet whose sequence number is 0 (2:0, 3:0
stand for this). In response to this, Nodes 2 and 3 transmit
packets in the following slots. In WTSP’s data collection,
the backlog field (B in the figure) is contained, indicating
the number of packets a node wants to transmit.

The sink node understands that backlog of each node is
zero in Slot 4, and hence does not add further schedules; it
transmits sleep packets whose wake-up slot is 161. Though
Nodes 2 and 3 lost a sleep packet in Slots 3 and 4, respec-
tively, they can enter the sleep mode as they received at least
one sleep packet.

Packet losses: Slots 161 to 167 show how WTSP han-
dles packet losses. During this time, Node 2 lost a control
packet from the sink node and cannot transmit a data packet
in Slot 162. Besides, the sink node lost a packet from Node 3
in Slot 163. For these reasons, the sink node sends an identi-
cal control packet in Slot 164. As a result, the sink node can
obtain all the data from each node.

Packets must be stored until the probability of retransmis-
sion becomes zero. If the sink node requests a packet whose
sequence number is s, this means that the sink node has re-
ceived packets whose sequence number is below s− 1. As
described in §4, WTSP manages the buffer without explicit
acknowledgment leveraging this fact.

Mixed traffic of burst collection and data dissemina-
tion: Slots 321 to 338 show how WTSP deals with burst
traffic and mixed traffic with data dissemination. As de-
scribed before, a packet of WTSP’s data collection has a

68

!"#$%&'()*+ , - - . / 0

1"**2345

-6, -6- -6. -6/ -60 -67 -66 -68 -69

1"**2345

/., /.- /.. /./ /.0 /.7 /.6 /.8 /.9 /.: //, //- //. /// //0 //7 //6 //8 //9

!*4;*+ - - . / - - - - &< / - . / - - - - . / - / / / - - . / - - . - / - -

=>?@*$
AB2*

!B4?

C#4$+#"DCE

F>$>DCE

F>$>DCE

!"**2

!"**2

!B4?

C#4$+#"DCE

F>$>DCE

C#4$+#"DCE

F>$>DCE

F>$>DCE

!"**2

!"**2

!B4?

C#4$+#"DCE

F>$>DCE

F>$>DCE

C#4$+#"DCE

F>$>DCE

F>$>DCE

F>$>DCE

C#4$+#"DFE

F>$>DFE

G?@DFE

G?@DFE

C#4$+#"DFE

F>$>DFE

G?@DFE

C#4$+#"DCE

F>$>DCE

!"**2

!"**2

=>?@*$
H*>;*+

.I,J%/I,

!K
,J%LK

,

!K
,J%LK

,

4*M$K
-6-J%+*;K

-

4*M$K
-6-J%+*;K

,

.I-J%/I-

!K
-J%LK

,

.I-J%/I-

!K
-J%LK

,

!K
-J%LK

,

4*M$K
/.-J%+*;K

-

4*M$K
/.-J%+*;K

,

.I.J%/I.

!K
.J%LK

,

!K
.J%LK

0

/I/J%/I0J%/I7

!K
/J%LK

/

!K
0J%LK

.

!K
7J%LK

-

-I,J%.IMJ%/IM

!K
,

G?@K
,

G?@K
-

-I,J%.IM

!K
,

G?@K
-

/I7

!K
6J%LK

,

4*M$K
09-J%+*;K

-

4*M$K
09-J%+*;K

,

N#11%&#;* . / . - .

Figure 4. Scheduling Example of WTSP

backlog field. Using this field, WTSP efficiently deals with
bursty traffic. In Slot 321, the sink node assigns a slot for
each node as in Slot 1 and 161. This time, the sink node
knows that the backlogs of Nodes 2 and 3 are 0 and 4, re-
spectively. As a result, the sink transmits a control packet
that assigns three slots for Node 3 in Slot 324.

During this collection process, a user pushes a request of
data dissemination. Data dissemination has a higher priority
than data collection; therefore, dissemination interrupts data
collection. In Slot 328, the sink node transmits a control
packet of data dissemination. This control packet means that
the sink node transmits a data packet, and requests each node
to transmit an acknowledgment message. In Slot 329, the
sink node transmits a data packet, but Node 2 lost this packet,
and Node 3 received it. Therefore, the sink node receives ac-
knowledgments 0 and 1 from Nodes 2 and 3, respectively.
The sink node makes a control packet to transmit the data
packet in Slot 333 and receives an acknowledgment 1 from
Node 2 in Slot 334. After the sink node successfully verifies
Node 2’s acknowledgment, the sink node completes the dis-
semination process. Then, the sink node requests Node 3 to
transmit the last collection packet, and sends sleep packets
in Slots 337 and 338.

Contrary to appearances, WTSP achieves relatively fast
data collection and dissemination. To illustrate the efficiency
of OTF scheduling intuitively, we compare the ideal perfor-
mance of WTSP with the state-of-the-art. Regarding data
collection, WTSP achieves approximately 2 KB/s if the max-
imum payload length is 64 B, and one second is divided into
32 slots. This throughput is comparable with that of the TCP
on ContikiMAC (1488 B/s [10]). Though the throughput is
much smaller than that of P3[5], which is a state-of-the-art
bulk transport protocol (20 KB/s), P3 requires session initi-
ation over the entire network, and the number of concurrent
sending nodes is limited to two. Unlike P3, WTSP can col-
lect from any number of nodes in parallel without network-
wide agreement.

Similarly, WTSP can perform fast data dissemination.
WTSP can complete data dissemination over 100 nodes
within several seconds. Moreover, WTSP can detect the
completion of dissemination by an explicit acknowledgment
check. Contrarily, state-of-the-art dissemination protocols
such as Drip [31] and DIP [23] require approximately a
minute to disseminate data, and users cannot verify the com-

pletion.
As described above, the OTF service-driven scheduling

on CTF performs comparably to the state-of-the-art. More-
over, it can support the mixed traffic well unlike with the
existing protocols.

3 ctfnetd
As described in §2, OTF scheduling tightly coupled with

upper-layer services offers several desired features. More-
over, the principle allows many attractive services as shown
in §4. To avoid conflicts among services and ease the devel-
opment of services, we developed a super scheduler called
ctfnetd. ctfnetd couples scheduling with services and
decouples common network management functions from
services. Specifically, ctfnetd delegates the generation
of control and data packets to services at adequate timing
through the callbacks of registered interfaces and conducts
low-power control, service arbitration, and node manage-
ment on behalf of network services. Here, we present the
design and implementation details of ctfnetd.

Scheduling policy: We choose priority-based scheduling
among network services rather than fair scheduling. This
is beneficial for most WSNs as described in §2 since a
user command can preempt other communications. The pri-
ority of network services is specified as the order of ser-
vice registration to ctfnetd. To improve the user respon-
siveness, stream-oriented dissemination, bulk dissemination,
ping, and data collection are registered in this order.

Delegation to services: Control packets and some packet
fields must be set just before they are transmitted. For ex-
ample, in a versatile collection service, the sink node cannot
obtain the right backlog information for burst packet send-
ing if a packet header is generated when the send API is
called. The backlog field of the first packet becomes 1 even
if the node has more packets in the buffer. In addition, in the
stream-oriented dissemination service, the sink node cannot
obtain the right acknowledgment if a packet header is gen-
erated at the reception of a control packet because the data
packet has not been transmitted.

Toward this, ctfnetd callbacks data and control packet
generation function of each service right before the assigned
slot. For example, a versatile collection service has its own
packet buffer and just accumulates packets in the buffer when
the send API is called. In the callback function, a packet

69

slots = min(CONTROL_MAX_SLOTS , // (1)
get_next_sync () - get_current_slot ());

for(i=0; i<service_num; i++){
slots = services[i]. make_control(ctrl , slots); // (2)
if(slots != 0 && slots != CTFNETD_NULL_SCHED) {

distribute_control(ctrl , slots); break; // (3)
}

}

Figure 5. Pseudocode of Slot Scheduling
slots = MAX_SLEEP;
for(i=0; i<service_num; i++){ // (4)
slots = min(slots , services[i]. next_wakeup ())

}
for(i=0; i<SLEEP_REDUNDANCY; i++){
distribute_sleep(slots , SLEEP_REDUNDANCY -i); //(5)

}

Figure 6. Pseudocode of Low-power Control

corresponding to the sequence number is chosen, the packet
header is set, and then the packet is pushed into the CTF
driver.

Separation of synchronization: Time synchronization
is an essential part of WTSP and is implemented directly
in ctfnetd rather than being implemented as a service. In
the context of OTF scheduling, the interval of control pack-
ets is highly variable unlike in the case of LWB or Virtus.
Synchronization with fluctuated-interval scheduling packets
makes synchronization accuracy unstable. We therefore sep-
arated synchronization so that the scheduling packet is dis-
tributed with a uniform interval to ensure synchronization
accuracy.

Node management: Wireless channel fluctuations, bat-
tery depletion, and software bugs may make communication
impossible. Assignments of slots for these nodes result in
a severe increase of power consumption and a decrease of
throughput. ctfnetd notifies network services of the death
of a node if the node’s response does not reach the sink node
several times in a row. To this end, ctfnetd maintains the
number of consecutive packet losses of each node, and noti-
fies each network service if the counter exceeds a predefined
threshold.

Implementation detail: Each network service registers
five function pointers as below.
• make_control(control_t* buf, uint8_t max):
ctfnetd callbacks this function of each network
service in the sink node before it sends a control packet.

• make_packet(uint16_t opt, uint8_t* buf,
uint8_t len): ctfnetd callbacks this function in a
sender node before the assigned slot.

• on_recv(uint8_t* buf, uint8_t len): ctfnetd
callbacks this function of a service when a packet linked
to the service is received.

• next_wakeup(void): ctfnetd callbacks this func-
tion of each service to calculate the next wake-up slot.

• on_member_changed(uint16_t nodeid, bool
onoff): When ctfnetd detects the joining or leaving
of a node, it callbacks this function to notify the
information.

ctfnetd uses the registered interfaces as shown in Fig-
ure 5 and Figure 6. First, the number of scheduling slots is
determined by the maximum entries of a control packet and
a nonconflict condition against time synchronization (Fig-
ure 5(1)). Then, ctfnetd polls network services about the
existence of communication demands in the order of priority
through make_control() (Figure 5(2)). If at least one net-
work service has demands, the sink node distributes a control
packet generated by the network service (Figure 5(3)).

When all network services do not have any demands,
the sink node calculates the next wake-up slot through
next_wakeup() (Figure 6(4)), and distributes sleep pack-
ets multiple times as described in §2 (Figure 6(5)). Note that
time synchronization continues to be conducted in the sleep
mode because synchronization is not a network service on
ctfnetd. By default, the duty cycle required for time syn-
chronization is only 0.03% because the time synchronization
interval is 30 s and the duration of radio-on time of time syn-
chronization is approximately 10 ms.

4 Network Services
ctfnetd is expressive enough to implement various effi-

cient protocols on it. When designing network services, not
only performance but also the complexity of computation,
memory usage, and usability should be considered. Here,
we describe the design of each network service.
4.1 Versatile Collection

Two requirements need to be considered while designing
an efficient data collection protocol. The first is how to ob-
tain the traffic demand from each node to achieve adaptabil-
ity. In LWB, users specify the traffic pattern using a sin-
gle parameter called inter-packet interval (IPI). However, the
users must explicitly consider traffic patterns with this ap-
proach. In addition, some applications such as wireless cam-
era networks and structure monitoring generate busty traffic.
In these applications, the single parameter of IPI alone can-
not describe the traffic well.

The service introduces a backlog field that shows the
number of packets to be collected, as ContikiMAC [10] and
Hui’s MAC [18] use a pending bit. Using this information,
WTSP can assign slots adaptably without forcing users to
specify the traffic pattern.

The second requirement is acknowledgment messages
for end-to-end retransmission. Senders must retain mes-
sages that have the probability of retransmission. Virtus [13]
adopts explicit acknowledgment messages after a reception.

WTSP adopts implicit acknowledgments for communi-
cation simplicity. Specifically, if a packet whose sequence
number is s is requested, this means that the sink node re-
ceived packets whose sequence number is less than s. More
specifically, each non-sink node maintains two variables of
acked_seq and pushed_seq. When non-sink nodes re-
ceive a control packet including the assignment for them-
selves, acked_seq is set to s− 1, where s indicates the re-
quested sequence number (if a control packet includes multi-
ple requests for a node, s means the lowest sequence number
among them). pushed_seq indicates the latest packet’s se-
quence number pushed into the buffer. The network service

70

while(sent_num < packets){
xmem_read(addr , buf , 64);
while(! wtsp_collect_send(TYPE_DATA , buf , 64)){

PROCESS_YIELD_SLOTS (1);
}
addr +=64; sent_num ++;

}

Figure 7. Application Code of Burst Data Collection

does not accept a packet from applications if pushed_seq -
acked_seq is larger than the buffer size.

The limitation of the method is that the packets received
by the sink node remain in the buffer of each sender un-
til the next request; hence, the number of packets that can
be accepted is reduced. However, this does not cause any
throughput degradation problem if the buffer length is more
than the twice the entry number of a control packet because
sender nodes can complement packets to the buffer just after
the next request.

This protocol does not support selective acknowledgment
to minimize the complexity of computation and communica-
tion. Therefore, out-of-order packets are discarded.

With these mechanisms, users can easily develop an
application that performs burst transportation. Figure 7
shows an application code that collects data from the
flash memory with 100% end-to-end reliability. Note
that PROCESS_YIELD_SLOTS() is an extension of PRO-
CESS_YIELD() of the Contiki OS, and the program execu-
tion is resumed after the specified slots.

4.2 Stream-oriented Dissemination
A consideration in the design of a data dissemination

protocol is whether the popular one-way (no-ack) scheme
should be adopted or not. Existing dissemination protocols
such as Drip [31], DIP [23], and LWB [12] (in the evalua-
tion of a mobile sensing scenario) adopt a one-way scheme
based on an eventual consistency model. Eventual consis-
tency is ensured simply by intermittently transmitting data
one-way, and this requires a little management information.
However, this approach has the disadvantage that the com-
pletion of dissemination cannot be detected. Continuing the
process impairs power efficiency, and interferes with other
network services.

We adopted a two-way, explicit acknowledgment scheme
because WTSP can efficiently perform end-to-end commu-
nication. In WTSP, an explicit acknowledgment is requested
after the sink sends data packets. The sink retransmits the
packets that are not acknowledged.

Superficially, collecting acknowledgment from every
node appears inefficient. However, as the frequency of dis-
semination is not very high (at most several times a day), this
scheme is more efficient than the always-on one-way scheme
for most applications.

Verifying the presence of acknowledgment from ev-
ery node is computationally heavy because this compu-
tational complexity increases linearly with the number
of nodes in the network. Toward this, a variable of
consistent_nodes is maintained. If a new packet is

!"#$%&'()*+%,-$.-&%/%0*1#&2

3 4 5 6 7 8 9 : ; < 43 44 45 46 47 48

=
-(
*
%>
0
?

3 !@ A B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4

4 B4 A B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4

CCC CCC

67 B4 A B4 B4 A D5 A B4 B4 B4 A D5 A D6 A D7

68 A D8 A D9 A B4 B4 B4 A D9 A D: A D; A D<

69 A D43 !E !E !E

!@ !F&1.+#&-G/$-#&%H/1I*$%J+#(%0-&I B4 B-00*(-&/$-#&%#J%H+#K+/(%-(/K*%J+#(%0-&I

!E !"**H%H/1I*$%J+#(%0-&I DL D1I&#,"*2K*%)-$(/H%J+#(%M#2*%L

Figure 8. An Example of Scheduling of Bulk Dissemina-
tion

pushed to the sink node’s buffer, the variable is set to
0. consistent_nodes is incremented when acknowl-
edgment from each node becomes consistent with the lat-
est pushed packet. consistent_nodes is decremented in
on_member_changed() if the dead node is already consis-
tent when the sink node detects the death of a node. As a
result, exceptional situations such as sudden death and join-
ing of a node can be supported with low complexity. Note
that the service also does not support selective acknowledg-
ment, and hence out-of-order packets received at non-sink
nodes are discarded.
4.3 Bulk Dissemination

Stream-oriented dissemination is not suitable for large-
data dissemination such as network reprogramming because
it does not support selective acknowledgment. Bulk dissem-
ination adopts bitmap acknowledgment for efficient trans-
portation. There are two ways to acknowledge the recep-
tion at every node: one-by-one acknowledgment or network-
wide acknowledgment. In one-by-one acknowledgment, the
sink node requests an acknowledgment of a single node, and
moves to the next node after every packet is successfully de-
livered to the node. In network-wide acknowledgment, the
sink node requests acknowledgment of every node, and de-
termines to retransmit packets using logical AND, and re-
peats this process until all packets are successfully delivered
to every node.

One-by-one acknowledgment is less efficient for acquir-
ing acknowledgments because one control packet is required
to obtain an acknowledgment. Contrarily, network-wide ac-
knowledgment is less efficient for requesting retransmission
if the correlation of the packet losses exists (one retransmis-
sion needs multiple acknowledgments). In WSNs, since cor-
relation of packet losses are common [6], we adopted one-
by-one acknowledgment.

An example of scheduling of reprogramming is illustrated
in Figure 8. In this figure, one second is divided into 16
slots for illustrative purposes. As shown in this figure, the
sink node distributes packets in a row and then requests an
acknowledgment from each node one-by-one.
4.4 ping

When users deploy WSNs, they want to quickly verify the
reliability between non-sink nodes and the sink node to de-
termine whether more relay nodes are required. Moreover,
users want to estimate the maximum length of a data packet
of the network because the packet length is constrained by

71

!"#$%&'()*+%,-$.-&%/%0*1#&2

3 4 5 6 7 8 9 : ; < 43 44 45 46 47 48

=
-(
*
%>
0
? 3 !@ A B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC

4 A B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC A

5 B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC B4 BC !D !D

6 !D

!@ !E&1.+#&-F/$-#&%G/1H*$%I+#(%0-&H B4 B-&J%G/1H*$%I+#(%$.*%0-&H%*

!D !"**G%G/1H*$%I+#(%0-&H BC B-&J%G/1H*$%I+#(%$.*%$/+J*$%*

Figure 9. An Example of Scheduling of ping

the hop count of a network and the slot length. It is because
CTF must be completed within a slot and the hop count of
a network cannot be clear before deployment. The ping ser-
vice is useful for these purposes.

To realize the ping service on ctfnetd, it is necessary to
consider the effect of loss of control packets. The measured
packet reception rate (PRR) becomes different from the ac-
tual rate since non-sink nodes cannot transmit packets if a
control packet is lost. For this reason, non-sink nodes should
manage the actual number of transmissions and communi-
cate the information to the sink node, unlike the ICMP ping.
In addition, to measure the PRR after the ping start, non-sink
nodes should reset these statistics every time the sink node
initiates the ping service.

Toward this, the ping packet has three fields, seq, tx_cnt,
and rx_cnt, where seq indicates how many times the ping
service has been initiated, and tx_cnt and rx_cnt are the num-
bers of times of transmission and reception of ping packets
in the service execution, respectively. Non-sink nodes main-
tain the last received seq, and if they receive a packet whose
seq is newer than that, they reset tx_cnt and rx_cnt. Up-
ward PRR is obtained by dividing rx_cnt of the sink node
by tx_cnt of the target node. Similarly, downward PRR can
be obtained by dividing rx_cnt of the target node by tx_cnt
of the sink node. Note that tx_cnt and rx_cnt of the target
node are not always the same because the target node cannot
transmit packets when it does not receive a control packet.

Figure 9 illustrates an example of scheduling of ping. As
shown, the slots are assigned alternately, and the process is
completed within several seconds.

5 Synchronized Sampling
Both CTF and sensor sampling are timing-critical tasks

in applications that require high-frequency sampling. To
achieve CTF, sensor nodes must forward packets immedi-
ately after the reception. If packet forwarding is deferred,
the concurrent transmission becomes destructive. Besides,
sensor sampling must be performed just at the desired sam-
pling timing. If sampling is deferred, the quality of sensing
decreases. Toward this, Kim et al. completely turned the ra-
dio off to ensure the accuracy of sampling timing [21]. This
approach can remove sampling jitter due to interruptions but
must stop synchronization. Therefore, time synchronization
errors accumulate, and furthermore make data collection in
real-time impossible.

To meet the two timing constraints, we leveraged
two characteristics of modern sensors and microcon-
trollers. First, recent accelerometers such as Analog De-

vices ADXL362 and Kionix KX022 have a FIFO module
and an external trigger function. When the trigger pins are
asserted, these accelerometers sample acceleration and store
the samples in their FIFO modules. Second, almost all mod-
ern microcontrollers including MSP430 and Cortex-M series
have compare-match peripherals. When a timer is config-
ured in the compare mode, the timer module toggles GPIO
pins without the intervention of software. By applying Com-
pare Out of a microcontroller to an accelerometer’s trigger
pin, accurate sampling can be done.

We used a 32,768 Hz crystal to generate sampling tim-
ing to keep a microcontroller off while performing high-
frequency sampling. Furthermore, we reduced the sampling
timing difference among the nodes to the crystal oscillator’s
resolution by applying Bresenham’s line algorithm [1].

6 Evaluation
In this section, we evaluate WTSP experimentally using

an implementation on TelosB. First, the collection service is
evaluated from the perspectives of efficiency, reliability, and
throughput. Next, we show the evaluation of stream-oriented
and bulk dissemination using an implementation of real re-
programming service. Lastly, we investigate the accuracy of
synchronized sampling.

All experiments except synchronized sampling were con-
ducted in the Indriya testbed [4], and node 1 was set as the
sink. We used 92 to 94 nodes depending on available nodes
in the testbed.

6.1 Collection: Efficiency and Reliability
First, we evaluate the protocols in periodic traffic, a typ-

ical traffic demand in WSNs. We verify WTSP’s energy ef-
ficiency by varying traffic demands and channels. Then, we
discuss robustness against interference by using a Wi-Fi co-
existing channel, and the overhead of WTSP’s scheduling by
comparing it with LWB.

Protocols: We demonstrate the performance of WTSP by
comparing it with two existing protocols, namely ORPL and
LWB, the state-of-the-art asynchronous MAC-based proto-
col and CTF-based protocol, respectively. ORPL is config-
ured as ORPL-2 (2 Hz LPL) and ORPL-8 (8 Hz LPL).

LWB is configured as LWB-1 and LWB-3, NT X = 1,3,
respectively, where NT X is a redundancy parameter (maxi-
mum number of times a node transmits during a CTF). This
parameter plays an important role in LWB. Increasing NT X
makes the communication reliable at the expense of power
consumption. In contrast, the number of redundant trans-
missions can be minimized in WTSP because end-to-end
retransmission helps reduce packet losses. The end-to-end
mechanism retransmits only the lost packets, improving en-
ergy efficiency while ensuring 100% reliability in most situa-
tions. Note that the parameter is not clearly shown in [12, 8].

Traffic patterns: We investigated energy efficiency and
reliability for periodic traffic demands by varying the IPI
(1 s, 3 s, 10 s, 30 s, 100 s, 300 s, and 900 s), and the chan-
nels (Ch19 and Ch26). The experiments were conducted for
30 min when IPI ≤ 30 s, and for 2 h when IPI ≥ 100 s. We

72

 0.1

 1

 10

 1 10 100 1000

D
ut

y
C

yc
le

[%
]

Inter-Packet Interval[s]

WTSP (Ch.19)
WTSP (Ch.26)

(a) Duty Cycle of WTSP

 0.1

 1

 10

 1 10 100 1000

D
ut

y
C

yc
le

[%
]

Inter-Packet Interval[s]

ORPL(LPL=2Hz, Ch.19)
ORPL(LPL=2Hz, Ch.26)
ORPL(LPL=8Hz, Ch.19)
ORPL(LPL=8Hz, Ch.26)

(b) Duty Cycle of ORPL

 0.1

 1

 10

 1 10 100 1000

D
ut

y
C

yc
le

[%
]

Inter-Packet Interval[s]

LWB(NTX=1, Ch.19)
LWB(NTX=1, Ch.26)
LWB(NTX=3, Ch.19)
LWB(NTX=3, Ch.26)

(c) Duty Cycle of LWB

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
el

ia
bi

lit
y[

%
]

Inter-Packet Interval[s]

WTSP (Ch.19)
WTSP (Ch.26)

(d) Reliability of WTSP

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
el

ia
bi

lit
y[

%
]

Inter-Packet Interval[s]

ORPL(LPL=2Hz, Ch.19)
ORPL(LPL=2Hz, Ch.26)
ORPL(LPL=8Hz, Ch.19)
ORPL(LPL=8Hz, Ch.26)

(e) Reliability of ORPL

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
el

ia
bi

lit
y[

%
]

Inter-Packet Interval[s]

LWB(NTX=1, Ch.19)
LWB(NTX=1, Ch.26)
LWB(NTX=3, Ch.19)
LWB(NTX=3, Ch.26)

(f) Reliability of LWB

Figure 10. Evaluation Results of Periodic Traffic. WTSP achieves higher reliability in any IPI and channel. WTSP
achieves better efficiency than ORPLs when IPI is large, and reliability is higher when IPI is small. WTSP and LWB
are less vulnerable to interference. WTSP achieves 100% reliability in both channels when IPI ≥ 5.

used a transmission power of 0 dBm, and the payload size
was set to 15 B.

Result: Figure 10 shows the results of duty cycle and
reliability.

Comparing with ORPL, for light periodic traffic (IPI ≥
300 s compared with ORPL-2, IPI ≥ 30 s compared with
ORPL-8), the results show that WTSP’s efficiency is higher.
For example, at IPI=900 s, the duty cycle of WTSP, ORPL-
2, and ORPL-8 are 0.09%, 0.30%, and 1.24%, respectively.
WTSP’s reliability is consistently higher than or equal to
ORPL’s. When LPL frequency is increased for greater re-
liability in ORPL, the energy consumption also increased.

In heavy traffic (IPI ≤ 10 s), WTSP’s duty cycle is higher
than those of ORPL-2 and ORPL-8. Still, WTSP’s reliability
is higher than those of ORPLs. For example, when IPI=3 s,
the reliability of WTSP, ORPL-2, and ORPL-8 are 97.49%,
32.84%, and 56.84%, respectively.

When comparing with LWB, the trends between these
protocols are consistent. Figure 11(a) and Figure 11(b) show
the reliability and the duty cycle in case of IPI=100 s, re-
spectively. From the reliability point of view, WTSP al-
ways provides 100% reliability as long as the traffic loads
do not exceed the network capacity (IPI ≥ 10 s). On the
contrary, LWB-1 and LWB-3 fail to achieve 100% reliability
even when the traffic load is lower than the capacity. Specif-
ically, when Channel 26 is used, the reliability of LWB-1
and LWB-3 are 97.2% and 98.75%, respectively. From the
efficiency point of view, WTSP achieves comparable perfor-
mance with LWB-1, and significantly outperforms LWB-3.
The duty cycle of LWB-1, LWB-3, and WTSP are 0.56%,

1.23%, and 0.66%, respectively. That is, LWB-3 consumes
approximately two times energy while providing less relia-
bility than WTSP.

Robustness against Interference: In any settings and
protocols, the duty cycle increases and reliability decreases
when Channel 19 is used. There is a trend that ORPL suffers
more from interference than WTSP and LWB. This trend is
because asynchronous MAC suffers from a false positive of
clear channel assessment (CCA) checks. By contrast, WTSP
and LWB do not suffer from the problem because they do
not perform CCA.
6.2 Collection: Throughput

We investigate the throughput by setting the IPI to 1 s,
payload length to 64 B, and varying the number of packet
generation nodes from 1 to 70 out of 94 nodes, with Chan-
nel 26. The result is shown in Figure 12. WTSP achieves
100% reliability when the number of traffic generating nodes
is less than 25, and the goodput does not drop below
1,600 B/s after saturated. On the other hand, ORPL’s reliabil-
ity is not 100% even when only two nodes generate packets,
and always lower than that of WTSP.

This result shows a characteristic difference between
WTSP and ORPL. WTSP outperforms when multiple nodes
generate traffic since WTSP does not suffer from congestion
and the hidden terminal problem. On the contrary, ORPL’s
performance significantly deteriorates due to these problems.
6.3 Reprogramming

We implemented a real reprogramming service using
stream-oriented and bulk dissemination, and evaluate the

73

 94

 95

 96

 97

 98

 99

 100

WTSP LWB-1 LWB-3

R
el

ia
bl

ity
 [%

]

Protocol

Ch.26
Ch.19

(a) Reliability.

 0

 0.5

 1

 1.5

 2

WTSP LWB-1 LWB-3

D
ut

y
C

yc
le

[%
]

Protocol

Ch.26
Ch.19

(b) Duty Cycle.

Figure 11. Comparison with LWB. WTSP achieves 100% reliability while LWB cannot. WTSP’s duty cycle is almost
the same as LWB-1’s. LWB-3 consumes power approximately twice as high as that of WTSP and LWB-1. Note that the
y-axis of Reliability does not begin from zero.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

R
el

ia
bi

lit
y[

%
]

Number of Packet Generation Nodes

WTSP ORPL-8 ORPL-2

Figure 12. Number of Sending Nodes vs Reliability

performance. A sink node reads its own 32,704 B program
image from the flash memory and divides it into 511 bulk
dissemination packets whose payload lengths are 64 B. The
last packet has a 32 B payload that consists of interrupt vec-
tors located at the end of program memory. After the com-
pletion of bulk dissemination, the sink transmits a packet
that instructs nodes to start reprogramming through stream-
oriented dissemination. Each node begins reprogramming
its own flash memory 10 s after it receives the dissemination
packet.

We conducted this three times in the Indriya testbed. On
average, the bulk dissemination time was 43.4 s and the re-
programming time was 14.9 s. Figure 13 shows the progress
of each node of bulk dissemination. As pointed out in [7],
the long tail problem occurs. Besides, WTSP’s dissemina-
tion is not the fastest (the fastest ever reported is 11.4 s [7]).
Even so, we believe the reprogramming time of 58.3 s is tol-
erable for many applications. Note that Deluge [17] requires
several hundred seconds to complete reprogramming [6].

6.4 Synchronized Sampling
We evaluate the sampling timing error between four nodes

that are placed nearby using a logic analyzer for 10 min. The
synchronization error is defined as the difference between
the sampling timing of Node 1 and that of each of the other

Figure 13. Reprogramming Progress of Each Node

nodes. Figure 14 shows the result. The maximum absolute
error is 91 us, RMS error is 22 us, and the average of the
timing difference is -0.4 us.

This result shows that delays due to task scheduling are
completely removed. If there is a task scheduling delay, there
must be sporadic large jitters [21]. The synchronization error
is mainly due to the resolution of the clock as expected.

7 Applications
We have developed wireless sensor network applications

using WTSP and performed deployment tests. Here, we
present three applications with different requirements, and
share deployment experience because real-world application
examples are limited in literature though many studies have
been conducted based on CTF.

The first application is tomato growth monitoring with
84 nodes placed in a relatively small greenhouse of dimen-
sions 10 m × 8 m × 3 m (high-density deployment), and
the second is structure monitoring with 61 nodes in a 360 m
long, 12-span elevated bridge (harsh radio propagation con-
ditions). The third is a wireless camera network with 10
nodes in a 35 m × 12 m laboratory. These three applica-
tions share communication infrastructure though they have
very different demands. All that the developers have to do is

74

-100

-50

 0

 50

 100

 0 10000 20000 30000 40000 50000 60000

Sy
nc

hr
on

iz
at

io
n

Er
ro

r [
us

]

Sampling Index

node2 node3 node4

Figure 14. Synchronized Sampling Accuracy

Figure 15. Deployment for Tomato Growth Monitoring

to implement the application code. By leveraging WTSP’s
features, these applications were implemented with a little
effort.
7.1 Tomato Growth Monitoring

In this application, we aim to capture the daily variation
of the leaf area index (LAI) of foliage for several months
to observe plant growth. The LAI is one of the important
indicators of plant growth, and is defined as the averaged
surface areas of all leaves per unit area. The LAI can be
estimated from the light transmittance of the foliage based
on the Monsi-Saeki model. Because each sensor output is
synchronously sampled over the entire network, light trans-
mittance can be simply calculated by dividing light intensity
from under-foliage nodes by that from the over-foliage node.

For estimating the LAI of each foliage in a tomato green-
house, with a relatively small size (10 m × 8 m × 3 m),
we deployed 84 sensors for two months (Figure 15). Each
sensor node equips a TelosB mote and senses light inten-
sity every 30 s. The average duty cycle is 0.94%, and every
packet is successfully collected without any losses owing to
the end-to-end retransmission scheme.

We recorded relay counts to the sink node of each packet.
We found that link fluctuations happened even in this small
greenhouse. Figure 16 shows a time series of relay counts
from a certain node. The arrow in Figure 16 indicates the
time period when the node rarely communicates with the
sink node directly for four hours even though it was possi-
ble at the time of deployment. Even in this case, WTSP can
seamlessly adapt to the fluctuations because of CTF.
7.2 Structure Monitoring

We developed a structure monitoring node that includes
Analog Devices ADXL362, TI MSP430F1611, and TI

 1
 1.5

 2
 2.5

 3
 3.5

 4

06/16
00:00

06/16
12:00

06/17
00:00

re
la

y
co

un
t

Figure 16. Link Fluctuation

Figure 17. Structure Monitoring Node

CC2520 as shown in Figure 17. We deployed 61 sensor
nodes over twelve viaducts in an urban expressway bridge.
Five sensors are deployed in each span, as shown in Fig-
ure 18. Each span is approximately 30 m, and the total length
of this deployment field is approximately 360 m.

We conducted a data collection experiment in the field.
In this experiment, the theoretical throughput is 1024 B/s
because we set slots per second as 16 to ensure the margin
of hop count. We measured acceleration over 40 s and col-
lected the data wirelessly. Figure 19 shows the time series of
throughput. As shown in the figure, the average throughput
is approximately 800 B/s. Data from 35 nodes were suc-
cessfully collected without any losses. The other nodes had
stopped sending data before the completion of the experi-
ment. After investigating the collected data, we found that
a software bug in the buffer management part in the appli-
cation layer caused this problem. Still, we could obtain data
from these nodes without any loss before they stopped send-
ing.

Figure 20 shows the average hop count from each node.
The average single-hop distance of 60 m is ensured in all
areas. This indicates that CTF does not show severe perfor-
mance deterioration in a network of this size. Though one-
hop distance is much shorter than that in the line-of-sight
environment (approximately 400 m), this performance dete-
rioration is due to the harsh radio environment. In this ex-
periment, the sensor installation locations are the narrow and
constrained spaces underneath the bridge slab surrounded by
steel and concrete bridge members.

75

!"#$ %&'#$()$&*)&$#

!"#$!"#%

!"#&

!"#'

!"#!

Figure 18. Schematic Plan View of Each Span. 61 sensors
are deployed over 12 spans

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Th
ro

ug
hp

ut
 [B

/s
]

Time [s]

Figure 19. Time series of Throughput

7.3 Wireless Camera Network
We connected a LinkSprite JPEG color camera [29] to a

wireless sensor node that embeds an Epic core module [11]
as shown in Figure 21. The camera module takes a photo
in response to a request and provides a JPEG file through
UART. Epic Core modules are programmed so that they take
a photo every hour, and transport the resultant JPEG file to
the sink node. Since WTSP supports in-order data collection
with end-to-end retransmission, it can collect JPEG files over
wireless networks. One of the important benefits, which we
did not expect, is that WTSP can transparently convey struc-
tured, loss-intolerant data such as a JPEG file.

8 Related Work
Most of the existing protocols support specific traffic de-

mands. CTP [16], TSMP [26], and Dozer [2] have been de-
veloped for periodic data collection, whereas Flush [20] and
PIP [27] are used for fast, reliable data collection. Protocols
that provide 100% reliability have severe limitations. These
protocols do not support duty cycling [27, 20, 25, 22], or
incur a large delay of several hours [24].

Several protocols have been proposed to support various
traffic types with a single mechanism. Specifically, Duquen-
noy et al. proposed a MAC layer that supports both burst
and light traffic. Moreover, they showed that the TCP works
on the proposed MAC layer, and it achieves 100% reliability
efficiently [10]. Orchestra [9] tries to facilitate both low de-
lay and high reliability by local scheduling without a global
view. However, the performance of these protocols would
deteriorate severely when several nodes generate traffic si-
multaneously because ContikiMAC is contention-based and
Orchestra does not have a global view. WSNs that perform
synchronized sampling generate bursty traffic; hence, these
protocols do not suit our purpose.

LWB [12] shows that the performance of collection on
CTF is promising. Though LWB considers various traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

Figure 20. Average Hop Count of Each Node

Figure 21. Wireless Camera Node

patterns including one-to-many, many-to-one, and many-to-
many, its target is periodic best-effort traffic. Other proposals
consider collection using concurrent transmission, such as
CX [3], P3 [5], and Choco [30], but they do not consider the
rich upper-layer services unlike WTSP.

Virtus [13] is the most closely related work to WTSP.
Virtus elegantly abstracts the acknowledgment scheme, and
a single mechanism achieves reliable one-to-many, many-
to-one, and many-to-many communication. However, the
throughput and delay of Virtus are adversely affected when
packet losses occur because Virtus does not adopt OTF
scheduling; the retransmissions are performed in the next
round. In fact, the authors experimentally show that the delay
dramatically increases up to the extent of several ten seconds
with packet losses. We believe the delay due to packet losses
should be minimized if Virtus adopts OTF scheduling.

Several works exist that exploit CTF to data dissemina-
tion, such as Splash [6] and Pando [7]. These protocols
improve the performance of data dissemination dramatically
(20 × or more). However, the integration is not discussed
well. There is no description on how to start or finish the pro-
tocol in [6]. Pando tries to safely detect the completion by
using the RSSI, and this leads to false positive and false neg-
ative problems [15]. To the best of our knowledge, WTSP is
the first to integrate diverse upper-layer services efficiently.

9 Conclusion
In this paper, we introduced the concept of Wireless-

Transparent Sensing and presented the design and imple-
mentation of WTSP based on the concept. WTSP leverages
on-the-fly and service-driven scheduling on concurrent trans-
mission flooding-based networks to provide diverse network
services efficiently. We confirmed the performance of WTSP
through the Indriya testbed and the practicality through the
diverse real-world applications.

76

10 Acknowledgment
We would like to thank the anonymous reviewers and our

shepherd, Mike Chieh-Jan Liang, for their invaluable com-
ments. We would like to thank Tomonori Nagayama and
Naoya Fukuda for their insightful comments on the require-
ments for wireless sensor networks based on the profound
knowledge in their research fields. We would also like to
thank Metropolitan Expressway Company Limited for pro-
viding experiment fields and advices. Special thanks to Ya-
sutaka Yamashita and Yuki Katsumata for their dedicated ef-
forts on the development and evaluation of the platform. This
work was partly supported by Council for Science, Technol-
ogy, and Innovation, Cross-ministerial Strategic Innovation
Promotion Program, “Maintenance, Renovation, and Man-
agement of Infrastructure”.
11 References

[1] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Syst. J., 4(1):25–30, 1965.

[2] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-low
power data gathering in sensor networks. In Proceedings of the 6th in-
ternational conference on Information processing in sensor networks
(IPSN), pages 450–459, 2007.

[3] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali. Forwarder
selection in multi-transmitter networks. In Proceedings of the IEEE
International Conference on Distributed Computing in Sensor Systems
(DCOSS), pages 1–10, 2013.

[4] M. Doddavenkatappa, M. Chan, and A. Ananda. Indriya: A low-cost,
3d wireless sensor network testbed. In Proceedings of the Confer-
ence on Testbeds and Research Infrastructures for the Development of
Networks & Communities (TridentCom), pages 302–316, 2011.

[5] M. Doddavenkatappa and M. C. Chan. P3: A practical packet pipeline
using synchronous transmissions for wireless sensor networks. In Pro-
ceedings of the 13th International Symposium on Information Pro-
cessing in Sensor Networks (IPSN), pages 203–214, 2014.

[6] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast data
dissemination with constructive interference in wireless sensor net-
works. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (NSDI), pages 269–282, 2013.

[7] W. Du, J. C. Liando, H. Zhang, and M. Li. When pipelines meet foun-
tain: Fast data dissemination in wireless sensor networks. In Proceed-
ings of the International Conference on Embedded Networked Sensor
Systems (SenSys), pages 365–378, 2015.

[8] S. Duquennoy, O. Landsiedel, and T. Voigt. Let the tree bloom: Scal-
able opportunistic routing with orpl. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems (SenSys), pages
2:1–2:14, 2013.

[9] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne. Orches-
tra: Robust mesh networks through autonomously scheduled tsch. In
Proceedings of the International Conference on Embedded Networked
Sensor Systems (SenSys), pages 337–350, 2015.

[10] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy links, low power,
high throughput. In Proceedings of the 9th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 12–25, 2011.

[11] P. Dutta, J. Taneja, J. Jeong, X. Jiang, and D. Culler. A building block
approach to sensornet systems. In Proceedings of the 6th ACM Confer-
ence on Embedded Network Sensor Systems (SenSys), pages 267–280,
2008.

[12] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
wireless bus. In Proceedings of the 10th ACM Conference on Embed-
ded Network Sensor Systems (SenSys), pages 1–14, 2012.

[13] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Virtual syn-
chrony guarantees for cyber-physical systems. In Proceedings of the
32nd IEEE International Symposium on Reliable Distributed Systems
(SRDS), pages 20–30, 2013.

[14] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with glossy. In Proceedings of the

10th International Conference on Information Processing in Sensor
Networks (IPSN), pages 73–84, 2011.

[15] R. Flury and R. Wattenhofer. Slotted programming for sensor net-
works. In Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), pages 24–34,
2010.

[16] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Col-
lection tree protocol. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys), pages 1–14, 2009.

[17] J. W. Hui and D. Culler. The dynamic behavior of a data dissemi-
nation protocol for network programming at scale. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor
Systems (SenSys), pages 81–94, 2004.

[18] J. W. Hui and D. E. Culler. Ip is dead, long live ip for wireless sensor
networks. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems (SenSys), pages 15–28, 2008.

[19] J. Il Choi, M. A. Kazandjieva, M. Jain, and P. Levis. The case for
a network protocol isolation layer. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems (SenSys), pages
267–280, 2009.

[20] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: A reliable bulk transport protocol
for multihop wireless networks. In Proceedings of the 5th interna-
tional conference on Embedded networked sensor systems (SenSys),
pages 351–365, 2007.

[21] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In Proceedings of the 6th international conference
on Information processing in sensor networks (IPSN), pages 254–263,
2007.

[22] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. Racnet: A
high-fidelity data center sensing network. In Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems (SenSys),
pages 15–28, 2009.

[23] K. Lin and P. Levis. Data discovery and dissemination with dip. In
Proceedings of the 7th International Conference on Information Pro-
cessing in Sensor Networks (IPSN), pages 433–444, 2008.

[24] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala: Ultra-low
power data retrieval in wireless sensor networks. In Proceedings of
the 7th international conference on Information processing in sensor
networks (IPSN), pages 421–432, 2008.

[25] J. Paek and R. Govindan. Rcrt: Rate-controlled reliable transport pro-
tocol for wireless sensor networks. ACM Trans. Sen. Netw., 7(3):20:1–
20:45, 2010.

[26] K. S. J. Pister and L. Doherty. Tsmp: Time synchronized mesh pro-
tocol. In Proceedings of the IASTED International Symposium on
Distributed Sensor Networks (DSN), 2008.

[27] B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale. Pip: A connection-
oriented, multi-hop, multi-channel tdma-based mac for high through-
put bulk transfer. In Proceedings of the 8th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 15–28, 2010.

[28] W.-Z. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, and R. LaHusen.
Air-dropped sensor network for real-time high-fidelity volcano moni-
toring. In Proceedings of the 7th International Conference on Mobile
Systems, Applications, and Services (MobiSys), pages 305–318, 2009.

[29] sparkfun. LinkSprite JPEG Color Camera. https://www.
sparkfun.com/products/11610.

[30] M. Suzuki, Y. Yamashita, and H. Morikawa. Low-power, end-to-end
reliable collection using glossy for wireless sensor networks. In Pro-
ceedings of the IEEE 77th Vehicular Technology Conference (VTC
Spring), pages 1–5, 2013.

[31] G. Tolle and D. Culler. Design of an application-cooperative man-
agement system for wireless sensor networks. In Proceeedings of the
Second European Workshop on Wireless Sensor Networks (EWSN),
pages 121–132, 2005.

[32] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and
P. Levis. Visibility: A new metric for protocol design. In Proceedings
of the 5th International Conference on Embedded Networked Sensor
Systems (SenSys), pages 73–86, 2007.

77

