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Abstract
Measurements that were taken at appropriate spatial and

temporal resolution are important for understanding urban
environment. However, due to cost issues, most of current
monitoring sensors are sparsely deployed and are not able to
provide sufficient spatial resolution. As an alternative solu-
tion, low-cost sensors that cost several orders less than the
current sensors have been exploited, providing much higher
spatial resolution with relatively low cost. However, the data
from low-cost sensors are widely reported to be deficient,
resulting in the calibration of low-cost sensors being more
difficult. In this work, key challenges of calibration of low-
cost sensors were identified, and the limitations of current
calibration methods were discussed. A multi-parameter cal-
ibration that not only utilises cross-sensitive parameters but
also considers other relevant parameters was proposed. The
stepwise regression method with interaction term was then
proposed to systematically select optimal parameters for the
calibration. The evaluations that were carried out in both city
centre and outside of city centre have shown a great advan-
tage of using the proposed method. It shows significantly
better result than the existing methods, in terms of improved
root mean square errors and better linearity between the cal-
ibrated trace and the reference.

Keywords
Low-cost sensors, multi-parameter calibration, urban en-

vironment

1 Introduction
Air quality deterioration has become a great concern in

modern society. An increasing number of health problems,
such as respiratory and cardiovascular diseases, are believed
to be associated with prolonged exposure to hazardous air
[40, 3]. This issue is especially relevant to urban residence
as more than 50% of the world’s population live in cities and

the majority of cities are heavily polluted [45]. In order to
maintain and improve human welfare and well-being, limita-
tions of major pollutants are clearly stated in the newly intro-
duced regulations and guidelines [9]. The regulatory limita-
tions serve as a reference and govern the maximal pollution
levels in a city. Therefore, it is essential to have measure-
ments for the urban environment, and such measurements
are currently provided by urban environmental monitoring
networks [7, 33].

Urban environmental monitoring networks consist of a
number of high quality sensors which are normally managed
and maintained by government authorities [7, 33, 39]. The
use of high quality sensors maximises the quality of mon-
itored data in terms of precision and accuracy. However
these sensors are expensive and require regular manual cal-
ibrations to ensure sustained sensor performance [9]. Thus,
only a limited number of sensors can be afforded and de-
ployed in a monitoring network. A further issue is urban en-
vironments are dynamic and unpredictable as it is a result of
both emission and transmission of pollutants [20]. In urban
environments pollution concentrations can vary significantly
over small spatial and temporal scale due to the presence of
dynamic pollution sources (cars), irregularity of urban topol-
ogy and harsh physical conditions [30]. The complexity of
the environment combined with having few high quality sen-
sors results in high uncertainty of result in obtaining the ur-
ban pollution level [30]. Therefore, measurements that were
taken at appropriate spatial and temporal resolution are es-
sential.

As a result, dense networks constructed by using low-
cost sensors, have been suggested and implemented in many
studies [16, 15, 23]. It has been shown they can provide
enhanced accuracy and confidence over current practices
[29, 13]. However, it has been widely reported that the col-
lected data from low-cost sensors suffers from large data un-
certainties, relating to low data precision and accuracy, high
percentage of data outliers and low correlation to reference
[5, 27, 21]. It suggests that low-cost sensors may require
comprehensive calibration processes in order to compensate
for those reported issues and to ensure the data accuracy.

Calibrations of low-cost sensors have been intensively in-
vestigated in the past decade. Considering low-cost sen-
sors are densely and broadly deployed, using conventional
manual calibration methods is not practical and appropriate.
Hence, automatic and semi-automatic calibration methods
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have been widely used [2, 4, 32]. Sensor calibration is a
process to determine a mathematical function, a calibration
function, that describes the relationship between indepen-
dent variables (uncalibrated parameters) and the dependent
variable (reference). In most applications of sensor calibra-
tion, the calibration function considers and uses only the pa-
rameter of interest. The function is determined by directly
comparing an uncalibrated data trace (the parameter of in-
terest) to its reference. However the correlation between
these can be weak [18, 19], leading to unsatisfactory accu-
racy [18]. As an alternative, a calibration method that utilises
information from the cross-sensitive parameters have been
proposed, and results have shown a significant improvement
of calibration result [31, 36, 35, 41]. Cross-sensitive param-
eters are defined as the parameters that are cross-sensitive to
the parameter of interest. However, to the best of our knowl-
edge, the automatic determining of cross-sensitive parame-
ters for a calibration process is not suggested in previous
research, resulting in high possibility of including inappro-
priate parameters in the calibration. As using inappropriate
parameters in a calibration process could result reduced ac-
curacy and biased result of calibration [22, 10], it is an im-
portant issue to be addressed.

Furthermore, parameters, which are not cross-sensitive to
the parameter of interest but are related to them, such as
noise level, were not considered in the previous works. We
believe that considering such parameters could provide key
information on calibration of sensors. For example, noise
level could related to the volume of traffic, and thus can be
used for helping calibration of NO2 as they are mainly gener-
ated by cars. Thus, we expect considering such parameters in
the calibration process the calibration result could be further
improved.

Parameters, like noise, that have unknown interaction
with the parameter of interest but could provide important
information for calibration of sensors, are called relevant pa-
rameters in this work. Multi-parameters in this work is de-
fined as parameters that belong to either cross-sensitive pa-
rameters or relevant parameters. Multi-parameter calibration
is then defined as a calibration process that utilise multi-
parameters.

Thus the contributions of this work are: 1) to identify
the main challenges in calibration of low-cost sensors; 2) to
show the importance of using multi-parameter in calibrating
low-cost sensors; 3) to show that calibration results are influ-
enced by using different quality of data; and 4) to propose a
method for calibration of sensors that systematically utilises
multi-parameters and obtain an improved result than state of
the art approaches.

This paper is organised as follows. In Section 2, data
features of low-cost sensors are analysed and challenges of
calibration of low-cost sensors are identified. The state-of-
the-art works in calibration of low-cost sensors are reviewed
in Section 3 and practical limitations of existing methods
are also summarised. In Section 4, an automatic calibration
method is proposed and it is evaluated and analysed in Sec-
tion 5. Finally, conclusions and further suggestions are stated
in Section 6

2 Understanding the Nature of Data
Data features depend on many factors and variation of

data features can influence the result of sensor calibration
significantly. In this section, key data features that directly
and indirectly affect calibration of sensors are investigated,
and how these data features vary by sensors and locations are
also illustrated.

The use of sensors and locations of measurements in this
work are firstly introduced in Section 2.1. The variation of
data by using different sensors and locations is then illus-
trated in the Section 2.2. In Section 2.3 and Section 2.4, is-
sues that potentially affect the result of multi-parameter cal-
ibration are explained. Finally, issues of calibration of low-
cost sensors are summarised in Section 2.5.

2.1 Use of Sensors and Location of Measure-
ments

In this work, two types of sensors, high quality sensors
and low-cost sensors, are placed at two locations, which are
differentiated by environmental complexity. High quality
sensors, which are also considered as references, are man-
aged by the Wolfson Atmospheric Chemistry Laboratory
(WACL), University of York, and Department for Environ-
ment, Food and Rural Affairs (Defra). They were calibrated
before the experiment to ensure the precision and accuracy
of data. For the low-cost sensors, ELM sensors, a product
from Perkin Elmer, are used [26]. Both types of sensors are
able to monitor multiple parameters including NO2 and O3,
which allows multi-parameter calibration to be performed.
To support cross comparison between the two types of sen-
sors, the output of both are converted to concentration per
unit.

Two locations were selected according to the environmen-
tal complexity. One location was selected on the top of the
WACL building, which is on the university campus outside
the city centre, in a relatively mild area. Another location
was in the centre of the city of York (Fishergate), next to
one of the busiest roads, where the environmental conditions
are highly dynamic. These two locations will be referred
to as WACL and City respectively in the following context.
At both locations, high quality sensors were co-located with
low-cost sensors within a meter range to minimise the spatial
influences.

2.2 How and Why Data Varies
The type of sensors and the variation of environments are

identified to be most influential factors for data variation [27,
21]. In this section, standard boxplots of NO2 data are used
to illustrate how data varies across different types of sensors
and locations. The results are shown in Figure 1.

Figure 1a is plotted by using raw dataset. Extreme val-
ues, which are also referred to as outliers in this work, are
represented by crosses in Figure 1a. The variation and scale
of outliers can be clearly seen across sensors and locations.
Outliers in the environmental data can be caused by many
factors, such as interference from the environment or the
malfunctioning of sensors. However, data from low-cost sen-
sors contains more outliers in general, and the variability of
those outliers is much larger; Comparing the same type of
sensor at different locations, a larger variation of outliers can
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be observed in the City. Such systematic patterns of outliers
between sensors and locations in Figure 1a indicate that dif-
ference of outliers in each sensor are related to the type of
sensors and location of measurements. The result suggests
that higher magnitudes and variations of outliers would eas-
ily occur in a sensor located in more complex environment
than less complex environment, and occur in low-cost sen-
sors than high quality sensors in general.

(a) Raw data

(b) Data without extreme values

Figure 1: Standard box-plots for data traces of NO2 from
four sensors at two locations

Figure 1b was rescaled from Figure 1a and plotted when
extreme values were excluded. Thus, the variation of data is
easier to see. Comparing sensors in the WACL in Figure 1b,
both boxplots show equally spaced percentile values. Data
from the reference sensor shows much less variation than
the low-cost sensor, which confirms that measurements from
reference sensors are more precise than the low-cost sensors.
The difference in environmental conditions between WACL
and City can be illustrated by comparing reference sensors
at two locations in Figure 1b. It shows the variability of data
in City is much higher than WACL and suggests the environ-
mental interference from City could be higher than WACL.
The result is also an evidence to explain why much higher
magnitude of outliers are generally presented in City than
WACL. Comparing sensors in the City, it is noticed that the
data from low-cost sensors are highly skewed. ELM(City)
boxplot in Figure 1b shows that the lower whisker, first quan-

tile and median values of the boxplot are all at zero, which
suggests that around 50% of data from low-cost sensor in
City are zero values. A large percentage of constant value in
the datasets suggests that the data from low-cost sensors in
City performed abnormally.

According to the previous study [28], the differences in
measurements between different types of sensors are caused
by the sensitivity and selectivity of sensors, which are also
believed to be associated with the use of sensing materials,
sensor designs and environmental conditions. Sensitivity of
a sensor is defined as the ability of a sensor to sense small
changes of pollution concentration. Low sensitivity of a sen-
sor could result in a low level of pollutants are incorrectly
measured and further result in a large percentage of constant
values in the data, like ELM(City) boxplot in Figure 1. The
selectivity of a sensor is defined as the ability of a sensor to
differentiate different pollutants. Low selectivity of a sen-
sor can result in measurements are influenced by other sub-
stances in the air and are cross-sensitive to other parameters.
Furthermore, environmental interference can have a large in-
fluence on both sensitivity and selectivity of sensors, which
results in variation of data from City being more significant.

As low-cost sensors generally have lower sensitivity and
selectivity, cross-sensitive parameters are more likely to oc-
cur in low-cost sensors. As a result, their data are more in-
fluenced by environment and are often less satisfactory than
high quality sensors, especially in a complex environment,
like a city centre [18, 28, 6, 11].

2.3 In-Situ Calibration
Cross-sensitive parameters of a sensor reduce the preci-

sion of measurements, and further affect calibration results
that are obtained using only a single parameter of interest
[18]. Thus, it is necessary to consider cross-sensitive pa-
rameters in the calibration of low-cost sensors [36, 35, 18].
However, unpredicted relevance among cross-sensitive pa-
rameters could result in utilising of cross-sensitive parame-
ters in a calibration difficult.

Figure 2 illustrates the cross-correlations of monitored pa-
rameters from an ELM sensor at two locations, WACL and
City. The numbers showing on each figure indicate the cor-
relation coefficients of two parameters which are indexed
by rows and columns, and the colour intensity indicates the
strength of correlation. The correlation coefficient represents
a quantitative measure of the linear dependence between two
parameters. Thus, the change of correlation can be consid-
ered as change of relevance between parameters. Comparing
Figure 2a with Figure 2b, it can be noticed that some corre-
lations change significantly when the location varies, such as
NO and NO2, and it indicates that the relevance between pa-
rameters is also different. It implies that a calibration method
that works in one environment may need to use different pa-
rameters or coefficients for the calibration functions in other
environments. Thus, the result indicates the importance of
conducting a calibration in-situ.

2.4 Using Multi-parameters in Calibration
Multi-parameters include both cross-sensitive parameters

and relevant parameters. The use of multi-parameters de-
pends on availability of the parameters and relevance be-
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(a) ELM sensor from WACL (WACL)

(b) ELM sensor from Fishergate (City)

Figure 2: Cross-correlation of parameters

tween the parameters. The availability of parameters is de-
termined by the use of sensors. As different sensors mea-
sure different parameters, it may not be feasible to use exact
parameters that used in the previous work due to the avail-
ability of parameters. The relevance between two parameters
means the variation a parameter is related to another param-
eter. It indicates that the calibration result could be improved
accordingly by including such parameters. As the cross-
sensitive among parameters vary by locations, like shown in
Figure 2, it suggests that the relevance among parameters is
also different. Thus, some parameters that determined in the
previous studies may not be appropriate parameters for this
work. Furthermore, low-cost sensors could behave abnor-
mally in complex environments, like ELM(City) boxplot in
Figure 1b. Using data from such sensors could result inap-
propriate parameters are included in the calibration. Accord-
ing to the previous studies [37, 22, 10], adding inappropriate
parameters in the calibration process would increase uncer-
tainty of coefficients for the calibration functions and further

bias the result of calibration. As it has high chance that in
real practice inappropriate parameters are included in multi-
parameter calibration, it is necessary to perform a systematic
parameter selection for multi-parameter calibration.

Another issue is inter-relationship among multi-
parameters. In the previous work [18], all cross-sensitive
parameters are assumed to be independent. However, in real
practice, parameters are unlikely to be fully independent.
Figure 2 shows that only humidity and NO2 in WACL are
fully independent variables as correlation coefficient is zero.
In other circumstance, the variation of one parameter may
be dependent on other parameters. Using level of noise and
concentration of NO2 as an example, the level of noise could
indicate the volume of traffic, which implies that the higher
the noise level could represent the higher volume of traffic.
As the NO2 concentration is closely linked to the volume of
traffic, the concentration of NO2 could vary differently when
the level of noise is different [12]. Therefore, it is necessary
to consider the relationship among multi-parameters in order
to obtain an optimal result.

2.5 Summary
The use of the sensors and the selection of locations are

identified to be the most influential factors for data features.
Data features in terms of magnitudes of outliers and variation
of data can be significantly different when those two factors
change. Furthermore, the cross-sensitivity among parame-
ters can be differently at different locations. Therefore, it
is necessary to perform calibration process for new sensors
in-situ.

Existing studies have shown the importance of using
cross-sensitive parameters. However, it is likely to include
inappropriate parameters in the process and bias the result of
calibration, as explained in Section 2.4. It raises the neces-
sity of having a systematic method for determining multi-
parameters. Moreover, considering the inter-relationship
among multi-parameters is believed to maximise the result
of multi-parameter calibrations.

3 Related work and existing limitations
Calibration of low-cost sensors, in general, can be classi-

fied as micro-calibration and macro-calibration [38, 43].
Macro-calibration does not require a reference as it only

utilises the consistency of the nearby environment and max-
imizes the similarity of measurements among the co-located
sensors [2]. This method is flexible and able to calibrate
large and dense networks with relatively low cost. However,
the calibrated result from macro-calibration is only relative
to the consistent measurements among sensors, which may
be biased if all sensors systematically drift. Furthermore,
considering the data variation and data quality of low-cost
sensors in Figure 1a, the required consistency of measure-
ment may not be obtainable, which suggests that macro-
calibrations is not suitable for calibrating low-cost sensors,
like ELM, or in a dynamic environment, like a city centre.

Micro-calibration, on the other hand, requires the pres-
ence of a reference and does not assume sensor behaviours
like those in macro-calibration. Therefore, the obtained cali-
bration function is more accurate and the calibrated result is

4



more close to the expected value [27, 32]. Therefore, micro-
calibration is used to calibrate low-cost sensors in this work.

Traditional calibration considers and uses only the param-
eter of interest. The function is determined by directly com-
paring an uncalibrated data trace to its reference. However,
data features that are mainly caused by cross-sensitive pa-
rameters, as explained in Section 2.2, make calibration of
low-cost sensors using only the parameter of interest insuf-
ficient in terms of calibration accuracy [34]. Thus, it raises
the importance of using cross-sensitive parameters in the cal-
ibrations.

Studies on cross-sensitive of parameters have been mainly
performed in an controlled environment. Morsi discovered
that changing temperature and concentration of gases influ-
ences the selectivity of gas sensors, such as CH4 and CO2

sensor [24]. Furthermore, Martin noticed that selectivity and
sensitivity of NO2 and CO sensors have a dependence on
the temperature [19] and Losch discovered that a large cross
sensitivity exists in between O3 and temperature [17]. The
studies show environmental parameters are broadly cross-
sensitive to each other, and their results indicate the impor-
tance of including cross-sensitive parameters in calibration
process.

The use of relevant parameters, such as noise or traf-
fic data have been widely used in environmental modelling
[14, 1, 42]. However, to the best of our knowledge, such in-
formation is rarely considered in the calibration of low-cost
sensors.

Eugster [8] utilised cross-sensitive parameters and elim-
inated the effects from humidity and temperature by using
the method in [24]. The result shows slightly improved
calibration result of sensors. Spinelle tested different sen-
sors, mainly O3 and NO2, and performed calibration in an
open environment by using cross-sensitive parameters that
were provided by high quality sensors [36, 35]. Spinelle
utilised joint information between O3 and NO2 in their cal-
ibration and the results indicate the calibration result of O3

was significant improved where the result of NO2 was only
improved slight. In work [18], Maag also performed cross-
sensitive calibration on several different low-cost sensors in
an open environment. They discovered that parameters, like
NO2, O3, temperature and humidity, are cross-sensitive to
each other. They also identified CO is an irrelevant parame-
ter for calibrating both NO2 and O3 sensor as adding the pa-
rameter of CO did not improve the calibration results. Their
result further supports that there is high chance to include ir-
relevant parameter in real practice. Both Spinelle and Maag’s
works suggest that parameters generally have higher correla-
tion with O3 than NO2 and it suggests that an NO2 sensor is
less related to other parameters and could be more difficult
to calibrate [36, 35, 18].

Both Spinelle and Maag suggest considering cross-
sensitive parameters in the calibration of pre-deployment of
sensors [34, 18]. However, as summarised in Section 2.5, a
calibration function that works in one location may not be
applicable for another location. Hence, it is necessary to test
the calibration method in a working conditions. Their works
did not suggest an automatic method to determine the cross-
sensitive parameters from available dataset. Thus, their work

can not be directly applied in a general application. Fur-
thermore, to the best of our knowledge, the existing works
did not considered inter-relationship among cross-sensitive
parameters, which suggests that calibration result can still
be improved. A further issue is that the data from cross-
sensitive parameters are currently provided by high quality
sensors. In real practice, those high quality sensors are not
always accessible. Therefore, it is necessary to understand
how using data from low-cost sensors and high quality sen-
sors would affect multi-parameter calibrations.

4 Method
Utilising cross-sensitive parameters in calibration of low-

cost sensors have shown a great advantage than the calibra-
tions that use only a single parameter [34, 18, 35]. In this
work, a regression based multi-parameter method will be in-
vestigated as it has been suggested to have a better perfor-
mance in practice than other methods [18].

In this section, inter-relationships among multi-
parameters are firstly addressed in Section 4.1. A two-way
interaction term from any two parameters is introduced,
which has been used in [12]. Then, stepwise regression
is proposed in Section 4.2 which avoids including inap-
propriate parameters by systematically adding parameters
into the regression. As a result, the proposed method are
expected to automatically utilise parameters (cross-sensitive
parameters and relevant parameters) from any available
dataset and produce better calibration result than the state of
art approaches that introduced in [18].

4.1 Relationship among Parameters
Section 2.4 has shown that the variation of NO2 can be

different at different values of noise. Therefore, such rela-
tionship needs to be considered in the calibration.

Assume a dependent variable, Y , which can be the ref-
erence data of NO2, and independent variables, X1 and X2,
which can be noise and uncalibrated NO2. Using the method
from [18], the calibration function with corresponding coef-
ficients β can be constructed as Equation 1:

Y ∼ β0 +β1 ·X1 +β2 ·X2 (1)

From the equation, both X1 and X2 are independent, which
means the change of X1 would not affect X2. However, in re-
ality that may not be a case. One possibility is that at higher
noise level, the variation of uncalibrated NO2 tend to be more
dramatic, whereas at lower noise level, the variation of un-
calibrated NO2 is much less, considering the noise level is
linked to the volume of traffic. It suggests that the variation
of uncalibrated NO2 is also depend on level of noise.

In order to solve the issue, a two-way interaction term is
introduced [12]. Adding interaction terms into the calibra-
tion function, the new equation will look like Equation 2:

Y ∼ β′
0 +β′

1 ·X1 +β′
2 ·X2 +β′

3 · (X1 ×X2) (2)

and the calibration function can be re-write as Equation 3:

Y ∼ β′
0 +β′

1 ·X1 +(β′
2 +β′

3 ·X1) ·X2 (3)
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In this case, the slopes of the equation between reference
NO2 (Y) and uncalibrated NO2 (X2) are different for the dif-
ferent level of noise (X1). Hence, the variation of NO2 is
related to the level of noise and β′

3 indicates how different
those slopes are. Therefore, adding interaction terms is be-
lieved to be able to maximise inter-relationship among multi-
parameters.

4.2 Stepwise Regression
Least square regression is a method that has been widely

applied to determine sensor calibration functions [32] and it
has been suggested to work better for calibration of using
cross-sensitive parameters than other methods [18]. Least
square regression is worked as the best approximation in
terms of least square errors between a dependent variable
and prediction result.

The least square method can also be used on multiple in-
dependent variables, which is called Multiple Least Square
(MLS) regression. As more than one independent vari-
ables are used, the approximation is conducted in a multi-
dimensional space as Equation 4, where Y stands for a de-
pendent variable, which can be considered as a reference
of a uncalibrated parameter, and X stands for independent
variables, which can be considered as uncalibrated parame-
ter and other available terms (measured parameters and in-
teraction terms). β stands for corresponding coefficients in
the function where n represents the index for the number of
independent variables.

Y ∼ β0 +β1 · x1 +β2 · x2 + · · ·+βn · xn (4)

MLS uses functions in Equation 5 and 6 to determine
optimal coefficients, where i indicates a time instance and
i ∈ 1,2, ...,N and N equals to the number of time stamps in
data.

ri = Yi − (β0i +β1i ·X1i +β2i ·X2i + · · ·+βni ·Xni) (5)

minimize
N

∑
i=1

r2
i (6)

Equation 4 utilises all available variables without per-
forming a systematic analysis to determine optimal param-
eters, it could easily include inappropriate parameters and
bias result of calibration. As a result, stepwise regression is
proposed to automatically utilise multi-parameter from any
available dataset, which enables the method to be applied di-
rectly to most of applications.

Stepwise regression is a regression method that is simi-
lar to the MLS regression. The key difference is instead of
using all parameters from dataset, stepwise regression per-
forms a stepwise process to select suitable parameters from
the dataset. The method starts with only one independent
variable and at each step a new variable from the dataset is
added into the regression. The result of regression is com-
pared between the current step (with the new variable) and
the previous step (without the new parameter). If a newly
added variable has a significant positive contribution to the
process in terms of calibration accuracy, this parameter is in-
cluded in the process. If the result fails to show a significant

improvement, then this newly added parameter is excluded
from the subsequent process. Sum of Squared-Error (SSE)
and F-test is used to determine the relevance of the newly
added parameter, which was also used in [18].

The stepwise regression between any two steps is per-
formed according to Equation 7 - 9:

SSE ′ = Y −β′
0 +β′

1 · xn (7)

SSE ′′ = Y −β′′
0 +β′′

1 · xn +β′′
2 · xn+1 (8)

SSEs between steps are calculated using Equations 7 and 8
and statistical significance between two steps are determined
by using F-test. The SSE is used to indicate the result of the
regression, where larger SSE value represents for less preci-
sion of approximation. Statistical significance (p <0.05) is
used in this case.

The null-hypothesis of each comparison is that adding the
next variable into the regression will not make a significant
difference to regression result. The alternative hypothesis
is that adding the next variable will make a significant dif-
ference. If tests fail to accept the null-hypothesis, then the
alternative hypothesis is accepted. Furthermore, if a positive
contribution is determined, the new parameter is then added
to the calibration function, the logic is indicated in Equation
9

Y ∼
{

β′′
0 +β′′

1 · xn +β′′
2 · xn+1, if SSE ′′ < SSE ′ & p < 0.05

β′
0 +β′

1 · xn, otherwise

(9)
This process continues until all available parameters are

tested, which also includes interaction terms that introduced
in Section 4.1. Thus, the proposed method could minimise
the uncertainty of calibration function by excluding inap-
propriate parameters from the process. Another advantage
of using stepwise regression is that it does not require pre-
determined knowledge of input data, like number of avail-
able parameters. Hence, it could be applied in general cases
where the use of sensors, the number of measured parameters
and locations are different. The use of method is illustrated
in Algorithm 1.

5 Evaluation
In this section, the methods are evaluated. The experi-

ment set-up and the use of data is first introduced in the Sec-
tion 5.1. The results of the proposed method are compared
against to the state of the art approach used in [18] in WACL.
Then, effect of calibration result relating to data qualities
of multi-parameters of is tested in Section 5.3. Finally, the
performance of the proposed method in real environment is
evaluated in the city centre.

In this work, calibration of NO2 is considered as it is
widely reported to be more difficult to calibrate than other
parameters, and it is one of major pollutant in urban environ-
ment [36, 35, 18].

5.1 Dataset and Pilot Experiment
The type of sensors and selection of locations of this ex-

periment is based on Section 2.1. Reference sensors at both
location measure NO2, NO and O3. Two versions of ELM
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Data: Reference: Ym×1 Uncalibrated data trace: x1m×1

Available parameters : x2m×1
to xnm×1

. m is for num-
bers of samples in each variable and n is for total num-
ber of available parameters

for i = 1 to n do
for j = i+1 to n do

termsi, j = x jm×1
xim×1

end
end

Result: Obtaining two-way interaction terms for all parame-
ters, termsm×t , t is for number of interaction terms

Xm×(t+n) = termsm×t + xm×n;

Result: Combining interaction terms and measured parame-
ters as independent variables, X

for k = 1 to numbers of ((t+n)-1) do
SSE(k) = Y - MLS(X1m×1

to Xkm×1
);

SSE(k+1) = Y - MLS(X1m×1
to Xk+1m×1

);
p = significance(SSE(k),SSE(k+1))

if SSE(k+1) < SSE(k) & p < 0.05 then
Xk+1m×1

is used in multi-parameter calibration

else
Xk+1m×1

is NOT used in multi-parameter calibration

end
end

Result: Using stepwise regression to determine parameters
and calibration function

algorithm 1: A pseudo code for the method

are used at different locations and they measure different pa-
rameters. Thus, it can be used to test the performance of
proposed method across sensors and locations. ELM sensor
at WACL measures parameters of NO2, O3, Temperature,
Humidity, dust, VOC and noise. ELM sensors in the City
measures parameters of NO2, NO, O3, Temperature and
Humidity.

Calibration function with linear model is commonly used
in most of calibration methods [2, 32]. However, other works
suggest that a non-linear model could be more optimal than a
linear model in their works [11, 25, 46]. Thus, it is necessary
to test the use of model before the experiment. In the pilot
experiment, various models from linear up to higher order
polynomial were tested. The linear model shows a great ad-
vantage over other models in our work, as the linear model
not only provides good calibration accuracy but also min-
imises computational time.

5.2 Evaluation in WACL
A number of co-located ELM sensors were previously de-

ployed on WACL, as illustrated in Figure 3. Due to the avail-
ability, eleven sensors are used to test the variation of cali-
bration results across sensors. Two months worth of data is
used, and in order to minimise the effect from natural varia-
tion of the data, cross-validation is used to obtain the results.

Figure 3: ELM sensors on top of WACL building

Multiple rounds of cross-validation are performed using dif-
ferent partitions of data, and the calibration result of a sensor,
in terms of one RMSE value in each boxplot in Figure 4, is
averaged over those rounds.

Root-mean-squared error (RMSE) between calibrated
trace and reference is used to determine the performance of
calibration. The smaller the RMSE value means calibration
accuracy is better. In this work, every one unit of RMSE im-
provement represents about 20 percentage better accuracy of
calibration. The calibration results in WACL is shown in Fig-
ure 4. Each boxplot presents variation of calibration result
over eleven sensors, the results obtained by different meth-
ods are differentiated by colours. Seven groups of results in-
dicate seven datasets with different parameters are used. The
seven parameters are determined by the number of measured
parameters from ELM sensor. Datasets are constructed by
gradually adding a new parameter into the previous dataset,
one parameter at each time. The first group only NO2 is
considered, the second group, O3 is added into the previous
group, and so on. Therefore, in the last group, total seven
parameters are used. The sequence of adding a new parame-
ter is random, which is the order of O3,H,T,dust,VOC and
noise.

In Figure 4, the importance of using multi-parameter cal-
ibration can be observed by comparing the first group with
the rest of groups. The significant improvement of calibra-
tion result is obtained when more than one parameter is used
in the calibration.

By gradually adding a parameter into the calibration pro-
cess, the MLS method shows a reduced accuracy for some
sensors when T is added into the dataset. It confirms that
adding inappropriate parameters can indeed reduce the cali-
bration result. On the contrary, as the proposed method sys-
tematically utilises parameters, the calibration accuracy are
gradually improved.

Parameters of O3,H, and T had been identified as the
cross-sensitive parameter for NO2 in the previous studies
[18]. In the Figure 4, result confirms that parameters of
O3,H, and T are important parameters for calibrating NO2

as they have positive contribution to the calibration in this
study as well. However, parameters of dust,VOC and noise,
which are considered as relevant parameter in this work,
were not used in the previous studies. Figure 4 shows the
result of calibration does not change when these parame-
ters are added in the MLS method, but the result of the pro-
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Figure 4: Calibration of a sensor in WACL

posed method is gradually improved when these parameters
are considered. The difference in results between two meth-
ods confirms the our previous assumption that utilising inter-
relationship among parameters can indeed maximise calibra-
tion results.

Figure 4 indicates the importance of using multi-
parameters in calibrations and suggests the proposed method
generally have better performance than MLS method, espe-
cially when the relevant parameters are introduced.

5.3 Influences from Data Quality

Figure 5: reference Ozone Vs ELM Ozone

As mentioned in Section 3, the previous works rely on
high quality sensor to provide data for cross-sensitive param-
eters. However, high quality sensors are not always accessi-
ble in real practice to provide such information. Therefore,
using multi-parameters provided by low-cost sensors seems
to be unavoidable. In order to understand how quality of

data from multi-parameters would affect the calibration re-
sult, this evaluation is performed.

Two datasets, a high quality dataset from reference and a
lower quality dataset from ELM are used to provide data for
multi-parameters. As NO2 and O3 are the only two common
parameters that are available for both sensors, O3 is used as
the only multi-parameter to calibrate NO2.

We assume that high quality dataset has much better data
quality in terms of precision and accuracy than the dataset
from low-cost sensor. Therefore, the effect on calibration re-
sult that caused by the quality of O3 can be differentiated by
comparing the calibration results that use O3 from different
type of sensors. Furthermore, we remove the extreme values
from the O3 datasets to evaluate how outliers from multi-
parameter would affect the calibration of NO2.

As data distributions of parameters are unclear, a non-
parametric method was used to remove outliers. Outliers
are considered as extreme data values that above or below
1.5 times of a distance between two quantiles of the boxplot
[44]. Both stepwise regression with interaction terms and
MLS calibration methods are applied to each dataset to see
how results vary by methods and the result of calibration is
shown in Figure 5.

In Figure 5, two colours of box-plot indicates the two
calibration methods and four blocks represent four datasets.
ELM data indicates the parameter of O3 is used from ELM
and Reference indicates the parameter of O3 is used from
high quality sensor. ELM w/o outlier and Reference w/o
outliers stands for the outlier from parameter of O3 are re-
moved.

In Figure 5, the variation of results between two methods
is not significant. It indicates that the difference in calibra-
tion result is caused by the use of data but not methods. Com-
paring block one with block three, using low quality data and
high quality data, a convincing enhancement of calibration
result can be concluded when a higher quality data is used for
multi-parameter. However, outliers, which are considered as
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extreme values, have an even higher impact on the calibra-
tion accuracy. Comparing datasets of O3 with and without
outliers, the results show a clear pattern that datasets after
outlier removal have better calibration accuracy than another
ones.

Figure 5 suggests that precision and accuracy of O3 do
have influence on the calibration result but the outliers of
O3 have more impact on the calibration result. As removal
of outlier in this section is for showing the calibration re-
sult without presence of extreme value, the quality of outlier
removal is not evaluated. Thus, the outlier removal is not
considered and used in the experiments of this work.

5.4 Calibration in City Centre
As mentioned in Section 2 and Section 3, it is necessary

to calibrate sensors under the working conditions. There-
fore, an ELM sensor which is calibrated at Fishergate, York.
For this experiment, ELM sensors were placed closely to the
reference station.

A month worth of data is used, where the first two weeks
data are used for training and last two weeks data are used
for testing. The proposed method is used and available pa-
rameters are NO2, O3, NO, Temperature and Humidity from
ELM and NO2 from reference. Figure 6 is a series of scat-

Figure 6: Calibration of a sensor in Fishergate

ter plots between the ELM data and reference at Fishergate.
The ELM data is expected to have a perfect linear depen-
dence with the reference in the Figure 6 as they stand for
the measurement of NO2 at the same time and location. The
correlation coefficient (R) between ELM data and reference
is calculated and a line which determined by the least square
method is also plotted. As the line in Figure 6 is calculated
based on least square method, the equation of the line indi-
cates the linearity between ELM data and reference, and the
slope and the offset of the equation is expected to be close to
one and zero respectively.

Figure 6a shows raw ELM with the reference. It is diffi-
cult to determine a proper fit between two readings and data
range vary significantly in ELM sensor. The result also illus-

trates that the low-cost sensor in city centre is hard to cali-
brate.

Then, a linear calibration using only parameter of NO2 is
applied in the Figure 6b. As only a single parameter, NO2,
was used, the calibration result is hard to explain as there are
large number of zero values at a certain point. It also indi-
cates that using only a single parameter to calibrate low-cost
sensor in urban environment is more likely to be insufficient.

Figure 6c shows the calibration result is significantly im-
proved when MLS multi-parameter calibrations are consid-
ered and suggests the importance of using multi-parameter
to calibrate low-cost sensors.

Figure 6d shows result when stepwise regression with in-
teraction terms is used. The correlation between the refer-
ence and ELM is much stronger than using the MLS cali-
bration. Furthermore, the linearity to the reference is also
improved by comparing the slope and offset with Figure 6c,
where the slope is much closer to one and offset is much
close to zero. Therefore, it is able to conclude that the pro-
posed method also works better than existing methods in ur-
ban environment.

6 Conclusions
The needs of high spatial resolution data encourages the

use of low-cost sensors. Due to the sensor design and the
use of low-cost material, the data quality from low-cost sen-
sor is often reported insufficient in terms of data variation,
outliers and precisions and accuracy. It makes calibration of
low-cost sensors important but difficult, especially in urban
environments.

In this work, the nature of data and how they influence the
calibration of sensors are explained in Section 2. The envi-
ronmental complexity, the use of sensors and data features,
like high variation of data and outliers, are identified to be
the main factors for calibration of low-cost sensors.

The evaluation at WACL is able to confirm the impor-
tance of using multi-parameters to calibrate low-cost sen-
sors and suggests the importance of using interaction term
to maximise the relationship among parameters. The result
also supports our assumption that the result of calibration
may not be optimal if includes inappropriate parameter or
not utilises inter-relationship among multi-parameters. The
proposed method shows a significant improvement of cal-
ibration result when relevant parameters are added, which
suggests that relevant parameter should also be considered
in the calibration. In the future work, more relevant parame-
ters will be exploited, such as weather data.

Moreover, we identified that the outliers from data have
more influence on calibration result than data precision and
accuracy. This finding suggests the importance of outliers
removal in the sensor calibration and it is essential to be ad-
dressed in the future work.

The calibration process that tested at Fishergate, York
confirms that use of multiple parameters helps to obtain a
better calibration result in the urban environment than using
only a single parameter. The result also indicates the pro-
posed method is able to work across locations and sensors,
and work better than existing methods in general.
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In contrast to existing work [18], our method can be di-
rectly applied on most of sensors and obtain better calibra-
tion results in various locations.
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