
The Neverending Runtime: Using new Technologies for Ultra-Low
Power Applications with an Unlimited Runtime

Björn Cassens
TU Braunschweig

cassens@ibr.cs.tu-bs.de

Arthur Martens
TU Braunschweig

martens@ibr.cs.tu-bs.de

Rüdiger Kapitza
TU Braunschweig

kapitza@ibr.cs.tu-bs.de

Abstract
Many wireless sensor network scenarios dictate tight

node size and weight limits. Still a long, if possible infinite,
mission lifetime is demanded. To fulfill these contradict-
ing requirements, we propose ECON1 a tailored combina-
tion of an energy harvesting device with a new nano-power
sleep mode that requires near zero power and preserves
the application state. An operating system agnostic system
software layer combined with NVRAM enables lightweight
mode transitions between nano-power sleep mode and nor-
mal operation. Furthermore, by introducing a new ultra-low
power management circuit we can tolerate power outages
that may occur when the power consumption outperforms
the harvested energy. ECON has been evaluated using a
Texas Instruments MSP430 node equipped with non-volatile
FeRAM. Our nano-power sleep mode drains 3.7 times less
power than the best onboard available sleep mode. Enter-
ing and leaving this mode is worthwhile when the microcon-
troller idles for more than 1.01 ms.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-

Purpose and Application-Based Systems; D.4.5 [Software]:
Operating Systems—Reliability

General Terms
Computer Systems Organization, Software

Keywords
Energy Harvesting, Energy Aware Systems, Wearable,

Firmware, Operating Systems, Power Outages

1Energy Conservation Environment

1 Introduction
The mission of our interdisciplinary BATS2 project is to

study the social behavior of bats. In order to acquire meeting
data, we equip bats with active sensor nodes. However, a
bat can only carry 10% of her own body weight, while still
behaving naturally [1]. Assuming the average body weight
of a Myotis myotis bat is 20 g, the weight limit of a node
(including the battery) should not exceed 2 g. Currently a
runtime of eight days with a 0.6 g sensor node and a 1.2 g
battery is achieved. As catching a bat causes stress to the
animal resulting in a changed behavior, these events must be
kept as low as possible. A frequent battery replacement or
increasing the battery size is therefore infeasible. In order to
still increase the runtime, decreasing the energy demand of
the node is the only remaining solution.

As more than 90% of the time our sensor nodes are idling,
a typical way to reduce the energy consumption is to enter
a deep sleep mode. However, even in a deep sleep mode,
parts of the microcontroller remain turned on, thereby still
draining energy from the battery. In some Wireless Sensor
Networks (WSNs) the accumulated energy consumption in
sleep mode may even exceed the energy consumed during
active operation [7]. Hence, we assume that decreasing the
energy demand of sleep modes will be beneficial for many
WSN settings. Nonetheless, the runtime remains still limited
even with a sleep mode that drains near zero power.

For further extending the runtime of sensor nodes, up to
an unlimited value, we propose the usage of an energy har-
vesting device together with a rechargeable battery. How-
ever, the amount of energy provided by the energy harvest-
ing device can be highly unreliable as it often depends on
many unpredictable factors, i.e. temperature, weather and
movements. Furthermore, an energy harvesting device adds
weight to the sensor node and in order to keep the weight
limits, the size of the battery must be reduced. Obviously, a
small battery with low capacity in combination with an unre-
liable energy harvesting device increases the risk of a power
outage. If not prevented, a power outage will lead to loss of
data and may bring a sensor node into an unrecoverable state.
The challenge is to store the state of the running application
and shutdown the sensor node in a controlled way before a
power outage happens.

2Dynamically Adaptive Applications for Bat Localization using Embed-
ded Communicating Sensor Systems, http://www.for-bats.org

325

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7



A possible solution to preserve data on an upcoming
power outage is to write the data into persistent memory.
Using flash memory for saving the state of an application
is infeasible because a high amount of energy is needed for
writing data [6]. Furthermore, flash memory is only block-
wise accessible and therefore small and fast write operations
are not possible [8]. Together, this renders flash memory
useless for storing data energy efficiently at high frequen-
cies. An alternative type of persistent memory that has sev-
eral advantages over flash-based memory is Non-Volatile
Random Access Memory (NVRAM). This group of novel
memory technologies is byte-addressable and offers low ac-
cess latencies comparable to Static Random-Access Memory
(SRAM). Thereby, NVRAM can be used as main memory
and allows in-place saving of data with minimal overhead.

Together with NVRAM, energy harvester and software,
ECON builds a system which is able to sustain power out-
ages and helps to save energy via a Nano-Power Sleep (NPS)
mode. Hereby, ECON consists of a hardware (Power Con-
trol Unit (PCU)) and a software counterpart, which are in-
teracting closely. The PCU is able to control the power sup-
ply of the microcontroller and peripherals. Furthermore, to
sustain power outages, the PCU is able to detect upcoming
power outages early on and generates interrupts to the micro-
controller accordingly. Depending on the signals of the PCU,
the software counterpart stores and restores the state of pe-
ripherals and application. The same mechanisms are used to
build the NPS mode, which turns off the microcontroller in
order to save energy.

The paper is organized as follows. The problems arising
from sustaining power outages are presented in Section 2.
Next, Section 3 details related work followed by the imple-
mentation of ECON described in Section 4. The achieved
results are discussed in Section 5, while Section 6 concludes
our paper.

2 Problem Statement
The main challenge for the utilization of energy har-

vesters in wireless sensor nodes is the power outage toler-
ance. Power outages need to be detected in advance in order
to save the state and shutdown the sensor node gracefully.
For the detection of power outages and for the control of the
wireless sensor node power supply we use the PCU which
is described in the next chapter. In order to save the state
before an immanent power outage occurs, we utilize novel
NVRAM and store the state directly in-place in main mem-
ory. Together these mechanisms form our novel NPS mode
which maintains the state of the sensor node but requires al-
most no power.

2.1 Power Outage Detection and Control
As mentioned before, the PCU controls the power sup-

ply of the microcontroller and detects power outages in ad-
vance. In our case, a power outage is not an immediate drop
of the voltage to zero since a battery has a cut-off voltage. Of
the-shelf Lithium-Polymer rechargeable batteries have a cut-
off voltage of approximately 2.75 Volts [4]. Although most
Ultra-Low Power (ULP) microcontroller can operate below
this voltage, it is very dangerous to continue operation as

Figure 1. Voltage curves of a fictive battery while dis-
charging, recovering and charging

it will drain the battery further and eventually damage the
whole device due to a deep-discharged battery.

As the battery has different states, which are depicted in
Figure 1, different thresholds must be defined for our ap-
proach and are described in the following. While a load
drains power from the battery the voltage decreases. If the
voltage hits the cut-off voltage (Vcuto f f ) the battery must be
considered as damaged due to a deep-discharge. In order
to shutdown the microcontroller gracefully before a deep-
discharge happens, the PCU sends a signal to the micro-
controller if a threshold voltage (vo f f ) 1 is reached. This
threshold voltage is defined by the amount of energy needed
to finish running operations on the microcontroller and to
save the state of the application. Afterwards the entire sen-
sor node is switched off until the energy harvester has suf-
ficiently recharged the battery to continue operation. As a
fall-back mechanism to prevent the deep-discharge, the PCU
shuts down the entire sensor node and removes the load from
the battery at (Vcuto f f ) 2 .

Please note that the battery voltage will increase when the
load is removed. This phenomenon is caused by chemical
processes and is denoted as Recovery in Figure 1. To prevent
an immediate start of the microcontroller after it has been
turned off, a hysteresis curve must be implemented in the
PCU. Therefore, only when the voltage hits a second thresh-
old voltage (Von), the microcontroller can be turned on 3 .
However, Von must be chosen carefully to prevent the micro-
controller bouncing between wakeup and shutdown states.

While designing the PCU, special care needs to be taken
to get the most energy-efficient result as the PCU will always
be active. Therefore, the circuit must be as small, in terms
of used devices, as possible to get a small quiescence current
and to prevent a high switching activity. The latter is impor-
tant since the dynamic current is orders of magnitude higher
than the quiescence current.
2.2 State Saving and Recovery

As mentioned before, the application state and also the
states of all peripherals must be saved on an upcoming power
outage. Once an upcoming power outage is detected, refer to
Figure 1 1 , it has to be ensured that enough energy remains
in the battery to finish running operations and to save the
state. Alternatively, this procedure may also be invoked in-
tentionally to enter our very efficient NPS mode. In this case

326



the external peripherals should continue normal operation as
long as possible as they are usually required to wakeup the
microcontroller. However, if the PCU detects a power out-
age during NPS, an emergency wakeup needs to take place
which saves the state of the external peripherals and shuts
down the microcontroller again. In order to recover the state
of the microcontroller on startup, we need to restore the state
of the application and of the peripherals. However, exter-
nal peripherals only need to be restored during the recovery
from a power outage since they remain active during the NPS
mode.

In terms of saving the application context, most applica-
tion data is stored in the non-volatile main memory. There-
fore, we only need to store the values of all registers and
the stack pointer in NVRAM. The energy demand for this is
driven by the processor architecture. As the number and bit-
length of each register is defined by the architecture it can
be assumed as constant. Saving the peripheral states, how-
ever, depends mostly on the application which may use only
a subset of peripherals. Furthermore, the energy demand of
external peripherals like transceivers is highly dependent on
their utilization by the software. Therefore, the energy de-
mand to store peripherals needs to be estimated in advance
to define a proper threshold Von for the detection of power
outages.

After a wakeup of the microcontroller 3 , it must be en-
sured that both, software and peripherals are in a coherent
state. Since peripheral states usually cannot be restored at
fine-grained level, they can only be set into a default state
after a wakeup. In order to avoid inconsistency between the
application and the peripherals after a wakeup, all operations
that assume a specific state need to finish atomically before
a shutdown.

Traditionally, atomicity of operation can be achieved via
transactional memory [3]. In case of a power outage, a
started transaction can be aborted and safely reexecuted af-
ter wakeup. However, transactional memory is not available
in hardware for microcontrollers and software solutions in-
cur a huge overhead in term of execution time and energy
consumption. In order to avoid the overhead of transactional
memory, we propose a different approach: Similar to trans-
actional memory, code sections which are not allowed to be
interrupted should be wrapped into atomic blocks. These
blocks can only be accessed when it is ensured that the op-
eration will finish before the sensor node runs out of energy.
For this technique it is necessary to estimate the worst case
energy consumption of all atomic blocks with tools like peek
[5] or 0g [14] and adapt the thresholds Vo f f appropriately.

3 Related Work
In previous works, different approaches have been intro-

duced to sustain power outages or to save energy by turn-
ing off unused devices or nodes. However, to the best of
our knowledge no previous work exists which combines, re-
silience against power outage with energy harvesting tech-
niques to achieve an endless runtime.

In order to prevent misbehavior of hardware and software
due to voltage drops, brown out detections are commonly

used [10]. Once a voltage drop has been detected, the micro-
controller is restarted and brought into a well-defined state.
The drawback of this approach is a complete loss of data and
computational progress. ECON also detects voltage drops
but maintains the state of the application. Therefore, it can
be used as a very energy-efficient sleep mode.

Smart drivers [2] are a concept that utilizes NVRAM to
improve energy efficiency. In order to collect data, the mi-
crocontroller performs only a partial startup into a low-power
mode. After certain amount of data is acquired, a full system
start is performed to process the data. While waiting for new
data to arrive, the microcontroller can be turned off without
any data loss. With a high performance microcontroller the
authors could reach an average energy demand comparable
to an ULP microcontroller. ECON, however, can also be ap-
plied to high performance microcontrollers but requires less
energy than any ULP microcontrollers we know at this time.
Additionally, ours is capable of energy recovery and can tol-
erate power outages.

In EPIC [15], Lohit Yerva et al. utilizie an energy har-
vester as the primary power supply of a node. To sustain
power outages, the application state is stored as checkpoints
in a battery backed SRAM. On a power outage or for saving
energy, a hardware module, similar to our PCU, turns off the
entire node. In contrast, ECON is able to turn-off the mi-
crocontroller and each of its external peripherals separately.
Thus, external peripherals like a wake-up receiver can be left
turned on in order to enable communication with other nodes
without any complex synchronization mechanisms. Further-
more, ECON maintains the whole program context. There-
fore transitions into NPS or power outages are transparent
to the application and no time consuming checkpointing is
required.

Similar to our approach, the microcontroller is turned off
in Hypnos [7] and an energy harvester is used to refill the bat-
tery during sleep times. The main memory, however, stays
active. In order to save energy, the voltage of the main mem-
ory is reduced below its specified values. The key assump-
tion is that no power outage occurs while the energy har-
vester recharges the battery, which is not realistic. More-
over, an undervolted memory highly increases the probabil-
ity of data corruptions. For example, a work from Zhu et al.
[16], shows that undervolting increases the error rate expo-
nentially. The authors also do not provide a solution on how
to store and restore peripherals. Therefore, in our opinion
the approach of Hypnos is not applicable to existing wireless
sensor nodes.

4 Implementation
For our implementation of ECON we used the

MSP430FR5969 microcontroller from Texas Instruments
[12]. This microcontroller provides FeRAM-based NVRAM
as program and main memory. This section will firstly de-
scribe the PCU and its characteristics and afterwards the soft-
ware infrastructure.

4.1 Power Control Unit
As mentioned before, the PCU needs to be always active

to monitor the power source. Therefore, it is crucial for this

327



Figure 2. Power Control Unit with its internal logic in-
cluding the Schmitt-trigger

device to drain as few energy as possible. In order to en-
sure a minimal power consumption only few parts should be
used to keep the switching activity as low as possible. Fur-
thermore, analogue parts such as analog-digital converters or
operational amplifiers usually have a high power consump-
tion. This means they cannot be used, as they consume too
much power. In order to measure the voltage we propose us-
ing a Schmitt-trigger like the NSP1101 [9]. Upcoming sub-
threshold technologies [11] can decrease the required current
for these circuits down to 4 nA. Furthermore, a digital con-
trol logic is required to generate all necessary signals for the
microcontroller and also to control the power supply of the
node. It is important that this circuit has a minimal power
dissipation.

As shown in Figure 2, our solution requires only two gates
to generate all necessary signals for the software. This in-
cludes signals for turning on and off all peripherals, the mi-
crocontroller, and the Power Outage Detection (POD) sig-
nal. If a power outage is detected the PCU generates a POD
signal which in turn prompts the microcontroller to save its
current state (= all registers and all peripheral states) to the
NVRAM. Additionally, if the microcontroller is already in
NPS mode at the time it receives the POD signal it needs to
wakeup and save the state of the external peripherals. This
is needed because we keep the external peripherals active
during NPS. The POD signal has also a second purpose for
turning off the sensor node after a predefined delay. Hereby
it is ensured that, even if the microcontroller or the software
misbehaves, a damage of the battery is prevented. After this
delay only the PCU remains activated and drains energy from
the battery. However, the energy consumption of the PCU is
negligible when implemented as previously described.

In order to ensure a wakeup of the microcontroller during
NPS mode, an external interrupt pin (EXTI) is implemented.
Each interrupt signal of the external peripherals must be con-
nected to this signal. A hold signal (HOLD) is implemented
to prevent a shutdown of the microcontroller during criti-
cal regions. This is necessary since interrupt processing or
atomic regions can reset the interrupt of an external periph-
eral which would cause a shutdown of the microcontroller
without a hold signal.

4.2 Software Infrastructure
The software infrastructure is implemented in form of a

small hardware dependent library. It interacts closely with
the PCU and is responsible for saving the state of the periph-
erals and the application. To ensure a response to a power
outage, the library requires at least one interrupt which is

driven by the POD signal. Additionally, an output for the
HOLD signal is required to ensure that the microcontroller
stays active until the software has finished its task.

For saving the application state, only the registers and the
stack pointer need to be saved. The remainder of the applica-
tion state is implicitly stored in the non-volatile main mem-
ory. Saving the registers and the stack pointer can be done
with only two assembly instructions (PUSHM.W). Hereby, sav-
ing and restoring the application state is implemented exactly
like a context switch between two processes.

To save the whole state of internal peripherals to the
NVRAM, specialized methods are implemented for each de-
vice. Whenever the configuration of these peripherals is al-
tered, a new state is saved in the main memory for the recov-
ery process. If external peripherals are used, callback func-
tions for saving and restoring the state need to be provided
by the user. This is necessary since a multitude of peripher-
als are available and no assumption of their protocols can be
made. For saving the states persistently, the programmer can
simply use global variables, as these are automatically stored
in a persistent memory. For example, if a radio device is
used, saving and restoring the configuration would be suffi-
cient. Volatile data like the received bytes can be neglected
since we assume that any operation depending on this data
will be executed inside an atomic block and is guaranteed to
finish before a system shutdown.

If a code block requires atomicity, two functions are pro-
vided to mark the beginning and the end of an atomic region.
Calling the function atomic_start() disables all interrupts.
In order to finish an atomic block, the atomic_end() needs
to be called which enables interrupts again. Please note that
no additional voltage measurements are needed since the
voltage threshold for the POD signal can be dimensioned
appropriately by estimating the worst case energy consump-
tion with tools like Peek [5] or 0g [14] for all atomic blocks.
Therefore, even if a power outage interrupt occurs right af-
ter entering the atomic block, it is ensured that the atomic
block will finish before the energy runs out. After calling
atomic_end() the microcontroller will process any avail-
able POD signal and will shut down the sensor node grace-
fully.

To distinguish all possible startup routines (normal
startup, wakeup from NPS and power outage) a custom
startup was implemented. It maintains the HOLD signal and
chooses the right startup sequence depending on an internal
status variable. All data is initialized if a normal startup is
performed, which is the case when the software is started the
first time or when the microcontroller was not able to save
all states before a power outage. This especially includes
the .data and .bss sections inside the main memory and a
jump into the main function of the application.

In contrast to the normal startup, the state recovery does
not use any variables stored in the stack. By doing so, any
data corruption of the application data stored on the stack is
avoided. Afterwards, the states of internal, and if necessary
external, peripherals are restored. Finally, the status variable
is reset and a context switch to the point where the microcon-
troller entered the sleep or where the power outage occurred
is performed.

328



In addition to the presented startup sequences, a special
case must be considered. While the microcontroller is in
NPS mode, a power outage can occur. Since external periph-
erals remain active during NPS, the microcontroller needs to
wakeup and save their states on an incoming power outage.
To prevent unnecessary recovery overhead, the startup func-
tion saves the external peripheral states without restoring the
application states and shuts down the microcontroller again.

5 Preliminary Results
We evaluated our prototype with tools onboard the MSP-

EXP430FR5969. It provides a debugger, an energy meter
and a minimal environment for user interactions like LED’s
and switches. All measurements are based on the energy me-
ter and the software provided by Texas Instruments. For the
measurement of the energy demand we turned off any LED’s
and onboard peripheral devices to keep the measuring errors
as low as possible. Furthermore, the microcontroller was
set in a freerunning mode which prevents energy overheads
caused by entering breakpoints.

In order to compare ECON to existing low power modes
provided by the microcontroller, we did three evaluations.
The first one is a theoretical comparison between values from
a data sheet [13] and our simulation results, which are pre-
sented in Section 5.1. As our recovery of the states may add
an overhead, we measured the energy demand of the state
saving and recovering process and compared it to a normal
startup in Section 5.2. Finally, in Section 5.3 we used the
values presented in Section 5.1 and 5.2 to compare ECON
to existing low power modes of the microcontroller.
5.1 Theoretical Energy Demand

The energy consumption during the NPS mode is solely
driven by the PCU that has to be always active. In the BATS
project we want to integrate the PCU into a custom ASIC
chip, build in 150 nm technology. However, since we do not
have our final hardware yet, we simulated the PCU circuit.
For the simulation of the control logic we used models pro-
vided by LFoundry and the Spectre Circuit Simulator from
Cadence. The stimuli data has been chosen according to the
normal operational case, i.e. no power outage is detected and
every second an interrupt is generated.

To get comparable values to the data sheet provided by
Texas Instruments, we used the same operation voltage of
3 V. Taken from the simulation, the control logic of the PCU
requires a quiescence current of 1.3 nA. Together with the
Schmitt-trigger’s estimated average power consumption of
4 nA [11] the PCU consumes 5.3 nA. As proposed in [13],
the smallest current consumption is achieved while the mi-
crocontroller is in the Low Power Mode (LPM) 4.5. In this
mode, the microcontroller typically consumes 20 nA, which
is 3.7 times higher than our presented approach.
5.2 Startup and Recovery Energy Demand

Beside the quiescence current during sleep modes, an-
other source of energy overhead is the state saving and recov-
ery process. We compare our results with a normal startup
sequence as some low power modes, and especially the
LPM 4.5, trigger a reset of the microcontroller on wakeup.
We conducted measurements for different amounts of global
variables, since these need to be initialized on each normal

Figure 3. Measured energy demand for a normal startup
compared to the combined energy demand of our state
saving and restoring procedure (100,000 repetitions)

startup. To get comparable results, no peripherals other than
the in- and output ports that are needed by ECON were
initialized. As the energy demand of the startup and sav-
ing procedures is extremely low, we repeated these proce-
dures 100,000 times each and measured the overall energy
demand. Additionally, to prevent any influence by transient
effects we repeated each measurement five times. As Figure
3 shows, the energy demand of a normal startup highly de-
pends on the amount of initialized global variables. ECON
on the contray, has to restore the application state by writing
all processor register values back which has a fixed energy
demand of 238.14 mJ for 100,000 subsequent startups. At
less than 40 Bytes of global variables, a normal startup con-
sumes less energy than our solution. Typical applications,
however, require much more than 40 Bytes of global vari-
ables and would benefit from ECON. For example a simple
Hello-World application written in C requires 1312 Bytes
stored in global variables. In this case, our recovery out-
performs the normal startup that requires 1348.27 mJ for
100,000 startups by a factor of 5.6.

5.3 Sleep Mode and NPS comparison
Since the NPS adds an overhead for saving and restor-

ing the states, we investigated the minimal duration at which
the NPS mode would save more energy compared to ex-
isting low power modes of the microcontroller. By using
the results from Section 5.2 (238.14 mJ for 100,000 iter-
ations) the average energy demand to enter and leave the
NPS is 2.38 µJ. Furthermore, we have to add the power
consumption of the PCU, as this device remains always ac-
tive. Since we do not have the PCU in hardware yet, we
use the simulation numbers from Section 5.1. By multi-
plying the voltage and current, we get a power consump-
tion of P = U · I = 3 V · 5.3 nA = 15.9 nW for the PCU.
Based on the formula E = P · t the energy demand of ECON
is 2.38 µJ + 15.9 nW · tsleep, where tsleep is the time spend
in sleep. We compare these numbers with all low power
modes that do not require an entire restart of the microcon-
troller. For this evaluation, we measured the average power
consumption during 60 seconds in each low power mode.
The results of this experiment are shown in Table 1 in the
Power column. As can be seen, the power draw during the
LPM modes is orders of magnitude higher compared to the

329



Table 1. Measured values for each sleep mode (Power)
and computed times (Time) in which ECON would
achieve higher energy savings

Sleep Mode Power Time
[mW] [us]

LPM 0 2.7191 875.29
LPM 1 2.6434 900.36
LPM 2 2.4941 954.26
LPM 3 2.4673 965.62
LPM 4 2.3550 1010.62

PCU. Therefore, the power consumption of the PCU is neg-
ligible and the energy overhead of the NPS is mainly driven
by the constant energy demand that is needed to enter and
leave the NPS.

With the known power draw of the NPS and the LPM
we can now compute the minimal amount of time needed
to be spent in NPS to become more energy-efficient than
any given LPM. Again the formula E = P · t is used here.
As can be seen in the time column in Table 1, the NPS be-
comes more energy-efficient than every other LPM when the
microcontroller remains for approximately 1.01 ms in this
mode. Furthermore, as the highest low power mode (LPM
4.5) typically consumes more energy during startup and has
a higher quiescence current, our NPS renders this mode use-
less. Since our measured values for the LPMs differ orders
of magnitude from the data sheet, we tested the accuracy
of the onboard measurement device. Measuring the current
through high precision resistors of known size we noticed
a maximum measurement error of 1.6%. Therefore, we as-
sume that our measured values are realistic and the bulk of
the current is consumed by external circuits which are re-
quired by the microcontroller.

6 Conclusions and Future Work
Wireless sensor nodes are commonly restricted by weight

and size limits, yet always higher runtimes are desired.
ECON tackles this contradicting requirements by using an
energy harvester in combination with a novel Nano-Power
Sleep (NPS). The NPS deactivates the sensor node without
loosing the application state and can therefore tolerate power
outages that are caused by an unreliable power supply like an
energy harvester. ECON achieves this by utilizing NVRAM
technology in combination with system software to store the
entire application state in-place in main memory. Addition-
ally, we introduce a novel Power Control Unit (PCU) that is
responsible for preliminary detection of power outages and
for the power control. As the PCU is the sole component that
remains active during NPS, we show how to implement this
part in a very energy efficient way. To prove the feasibility
of ECON we implemented a prototype based on a micro-
controller with non-volatile FeRAM. Our evaluation results
show that the PCU implementation can achieve a very low
power drain of 15.9 nW. Together with our lightweight save
and restore mechanism for the application state the NPS out-
performs any available sleep mode on our hardware at 1.01
ms of sleep time.

7 Acknowledgements
This work was partly supported by the German Research

Foundation (DFG) under grant no. FOR 1508 and grant no.
KA 3171/3-2. Special thanks go to Chia-Yu Hsieh, who sim-
ulated our control logic for the energy estimation in our eval-
uation.
8 References
[1] S. Amelon, D. Dalton, J. Millspaugh, and S. Wolf. Radiotelemetry

techniques and analysis. In Ecological and behavioral methods for
the study of bats, pages 57–77, 2009.

[2] C. Brandolese, W. Fornaciari, L. Rucco, and F. Terraneo. Introducing
smart drivers a way to conceive smart data sensing in wireless sen-
sor networks. In Information Communication and Embedded Systems
(ICICES), pages 1–6, 2013.

[3] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed
Systems, pages 1793–1807, 2010.

[4] Guangzhou Markyn Battery Co., Ltd. Specifications for GMB-
300910. Rev. A/0.

[5] T. Hönig, H. Janker, C. Eibel, O. Mihelic, and R. Kapitza. Proac-
tive energy-aware programming with peek. In Conference on Timely
Results in Operating Systems (TRIOS), 2014.

[6] K. Ishida, T. Yasufuku, S. Miyamoto, H. Nakai, M. Takamiya,
T. Sakurai, and K. Takeuchi. A 1.8 v 30nj adaptive program-voltage
(20v) generator for 3d-integrated nand flash ssd. In Solid-State Cir-
cuits Conference - Digest of Technical Papers, (ISSCC), pages 25–33,
2009.

[7] H. Jayakumar, A. Raha, and V. Raghunathan. Hypnos: An ultra-
low power sleep mode with sram data retention for embedded mi-
crocontrollers. In Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), International Conference on Hardware/Software
Codesign and System Synthesis, pages 1–10, 2014.

[8] V. Mohan, S. Gurumurthi, and M. Stan. Flashpower: A detailed power
model for nand flash memory. In Design, Automation Test in Europe
Conference Exhibition, pages 502–507, 2010.

[9] Nano Power Solutions, Inc. NanoPower -CMOS Comparator. Visited
on October 2015, http://www.npsi.jp/j/product/nps1101.pdf.

[10] Philips Semiconductors. Protecting Microcontrollers against Power
Supply Imperfections. AN468, published in May 2001.

[11] SAPNA and B. P. SINGH. Low power schmitt trigger in sub-threshold
region. In Proceeding Of International Conference On Recent Trends
In Computing and Communication Engineering, RTCCE, pages 88–
91, 2013.

[12] Texas Instruments. MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Family User’s Guide,
2012. Rev. G, Revised October 2015.

[13] Texas Instruments. MSP430FR59xx Mixed-Signal Microcontrollers,
2012. Rev. G, Revised March 2015.

[14] P. Wägemann, T. Distler, T. Hönig, H. Janker, R. Kapitza, and
W. Schröder-Preikschat. Worst-Case Energy Consumption Analysis
for Energy-Constrained Embedded Systems. In Proceedings of the
27th Euromicro Conference on Real-Time Systems (ECRTS), pages
105–114, 2015.

[15] L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta. Grafting
energy-harvesting leaves onto the sensornet tree. In Proceedings of the
11th International Conference on Information Processing in Sensor
Networks, IPSN, pages 197–208. ACM, 2012.

[16] D. Zhu, R. Melhem, and D. Mosse. The effects of energy manage-
ment on reliability in real-time embedded systems. In Proceedings
of the 2004 IEEE/ACM International Conference on Computer-aided
Design, ICCAD, pages 35–40. IEEE Computer Society, 2004.

330


