
Demo: Ball and Plate Wireless Control

Maxime Louvel, François Pacull, Maria Isabel Vergara-Gallego
Univ. of Grenoble Alpes

CEA, LETI, MINATEC Campus

{FirstName.LastName}@cea.fr

Abstract
This demonstration uses the transactional guarantees of

the LINC middleware to increase the reliability of a wireless
control system. Three motors lift up a plate with a ball on
top. In order to keep the ball on the plate, the motors must
move at the same time.
Keywords

Reliability, Redundancy, Wireless Sensors and Actuators

1 Introduction
Wireless Sensor and Actuator Networks (WSANs) are

now targeting control applications in many domains such as
industries, medical, and mission-critical systems. Theses do-
mains require more reliability and robustness than traditional
monitoring systems.

Despite the efforts to improve communication error re-
silience [5], in most cases, end-to-end data delivery is not
guaranteed in WSAN. Therefore, it is not possible to guar-
antee, at the application level, the state of the system.

This demonstrator consists of a ball and plate control.
Three motors are used to raise up and down the plate. To
keep the ball on the plate, the motors must be synchronised.
While this might be quite simple from a control point of
view, the challenge here is to control the motors with an
unreliable wireless communication, and unreliable actuators.
Indeed, if one motor stops working, the other two must stop
to prevent the ball from falling down. This paper details how
the demonstrator has been built thanks to the transactional
guarantees offered by the LINC [4] middleware. The prob-
lem is solved with a simple rule, executed by several compo-
nents to provide redundancy.

As illustrated in Figure 1, each motor is controlled by a
wireless communicating device. The first motor is controlled
by an ArduinoUno, which communicates through ZigBee,
and the other two are controlled by an Openpicus communi-

cating through Wi-Fi. The motors are controlled by a LINC
rule that permits the movement of the three motors step-by-
step. In this way, the total number of steps performed by
each motor is kept synchronised. A user interface displays
the demo state on a tablet. For redundancy purposes, the rule
is executed by two coordinators: the first runs on a Beagle-
bone black, the second one on a RaspberryPi B.

User Interface

OpenPicus (wi)

Arduino + Xbee

Coord1:

BeagleBoard

Coord2:

RaspberryPi

Figure 1. Platforms and hardware used in the Demo

2 LINC Transactions for Reliability
LINC [4] is a rule-based middleware able to coordinate

the actions of a group of components through a high level
protocol. It provides an abstraction layer that relies on the as-
sociative memory paradigm implemented as a distributed set
of bags containing resources (tuples). Inspired by Linda [1],
bags are accessed by three operations: rd(), get(), and
put(), that permit to respectively read, consume or add re-
sources in the bags.

These three operations are used within production
rules [2]. A production rule is composed of a precondition
phase and a performance phase. In the precondition phase
a set of rd() operations are done to detect or wait for the
presence of resources in the bags. In the performance phase
a set of actions are performed in a Distributed Transactional
way, so that operations on sensors, actuators, and software
components are embedded in a transaction. This ensures that
all the considered operations will be done in an atomic way.
Consider the example of transaction embedding the sending
of the command to the three motors. If one motor is broken,
the rest of the transaction is not executed and all the motors
stop, preventing the ball from falling.

LINC rules are executed by dedicated components called
coordinators. A rule can be executed by several coordinators
who may run in different machines or different networks to
provide redundancy. Thanks to the transactions, the same
rule may be executed several times. If the transaction con-

233

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7

sumes a unique resource, LINC enforces that only one trans-
action will succeed, the other one will fail when consuming
the resource.

Transactions are implemented with a two phase commit.
The first phase of the transaction checks that all the actions
involved can be executed. The resources are locked for this
transaction. Any other transaction trying to access a resource
reserved will be cancelled and tried again later by the coor-
dinator. If one action fails, all the actions are cancelled. In
the second phase, the resources are actually consumed and
the command (added as resources in dedicated bags) are sent
to the actuators. An action may fail because a resource has
been consumed by another transaction, or due to a failure to
access the remote bag.

In order to implement the transactions with sensors and
actuators, a part of the LINC protocol has been embedded in
the micro-controller of the sensors/actuators [3].

3 Demo Description
Listing 1 shows a simplified rule controlling the system.

The precondition phase reads (line 1) the current step of one
of the motors (they are all synchronised) and computes the
new step (line 2). Then, the performance phase (after ::)
starts by consuming the current step of the motors (line 5
to 7) and sends the commands to lift up the three motors
(line 8 to 10). Note that the actual rule also makes the motors
lift-down by a more complex computation in line 2.

1{∗ , !} [”OpenPicus2” , ” Ac tua to rs ”] . rd (s tep) &
INLINE COMPUTE: new step=s t r (i n t (s tep) +1) &

3: :
{

5[” Arduino1” , ” Ac tua to rs ”] . get (” NStep” , s tep) ;
[” OpenPicus1” , ” Ac tua to rs ”] . get (” NStep” , s tep) ;

7[” OpenPicus2” , ” Ac tua to rs ”] . get (” NStep” , s tep) ;
[” Arduino1” , ” Ac tua to rs ”] . put(” NStep” , new step) ;

9[” OpenPicus1” , ” Ac tua to rs ”] . put(” NStep” , new step) ;
[” OpenPicus2” , ” Ac tua to rs ”] . put(” NStep” , new step) ;

11} .

Listing 1. Rule to control the movement of the three
motors

In addition to executing the rule, each coordinator informs
the other one, for recovery purposes, when:
• it starts a transaction;

• it finishes the first phase, informing as well on the suc-
cess or failure of the transaction;

• it finishes the second phase of a transaction.
The information required to finish the transaction is also
exchanged (instantiated variables). Hence, one coordinator
may finish the transaction if the other fails, ensuring the con-
sistency of the system.

In the normal mode all the equipment and the communi-
cation are working properly. Both coordinators try to change
the step of all the motors. The transaction ensures that only
one rule succeeds, the second one to execute will fail when
getting the step value from the devices, because meanwhile
it has changed.

This demo can tolerate the following failures:
• Connection failure may occur when sending a com-

mand to one of the controllers.

– if this happens in the first phase of a transaction,
the transaction is rolled back;

– coordinators register the error and will periodi-
cally retry;

– when the communication is back, the normal exe-
cution is resumed.

• One of the coordinators is stopped (e.g. for mainte-
nance). Here, the second coordinator continues the nor-
mal execution.

• One of the coordinators unexpectedly fails:
– If it was not executing a transaction, the other co-

ordinator continues the normal execution;

– If it was in the first phase of the transaction, the
other coordinator enters a recovery mode to can-
cel the reservations that might have been done and
execute the transaction;

– If is was in the second phase of the transaction,
the other coordinator enters a recovery mode to
confirm or abort the transaction as the failed coor-
dinator would have done.

• One or more equipment (OpenPicus or Arduino) is dis-
connected or stopped. The transactions will fail until
all the motors are accessible, preventing the ball from
falling of the plate.

Finally, the demo provides a lightweight interface used to
monitor the state of the system. This interface is accessible
from a web browser (e.g. a normal tablet). The interface
is also synchronised with the rest of the demo. It is seen as
another equipment and, if absent, it prevents the motors from
moving. This demonstrates that software and hardware can
be safely coordinated in a wireless and distributed system.
4 Conclusions

This demonstration shows how the LINC coordination en-
vironment can be used to build reliable control systems in
WSAN. The LINC primitives have been embedded in the
devices, so that transactions can be performed and the state
of the system is kept consistent. This demonstration shows
that, even under hardware or communication errors, the syn-
chronisation between the motors is kept.
Acknowledge

This Work was supported by the European projects
TOPAs (676760) and Arrowhead (332987).
5 References
[1] N. Carriero and D. Gelernter. Linda in context. Commun. ACM,

32:444–458, 1989.
[2] T. Cooper and N. Wogrin. Rule-based Programming with OPS5, vol-

ume 988. Morgan Kaufmann, San Fransisco, 1988.
[3] H. Iris and F. Pacull. Smart sensors and actuators: A question of disci-

pline. Sensors & Transducers Journal, 18(special Issue jan 2013):14–
23, 2013.

[4] M. Louvel and F. Pacull. Linc: A compact yet powerful coordination
environment. In Coordination Models and Languages, pages 83–98.
Springer, 2014.

[5] M. A. Mahmood, W. K. Seah, and I. Welch. Reliability in wireless
sensor networks: A survey and challenges ahead. Computer Networks,
79:166 – 187, 2015.

234

	Introduction
	LINC Transactions for Reliability
	Demo Description
	Conclusions
	References

