
NaviGlass: Indoor Localisation Using Smart Glasses

Yongtuo Zhang1, Wen Hu1,2, Weitao Xu3, Hongkai Wen4, and Chun Tung Chou1

1School of Computer Science and Engineering, University of New South Wales, Australia
2National ICT Australia, Australia

3School of Information Technology and Electrical Engineering, University of Queensland, Australia
4Department of Computer Science, University of Oxford, United Kingdom

{ytzhang, wenh, ctchou}@cse.unsw.edu.au1 w.xu3@uq.edu.au3 Hongkai.Wen@cs.ox.ac.uk4

Abstract
Smart glasses (e.g. Google Glasses) is a class of wear-

able embedded devices with both inertial sensors and cam-
era onboard. This paper proposes a smart glass-based indoor
localisation method called NaviGlass. Because of high en-
ergy consumption of vision sensors, NaviGlass uses inertial
sensors predominantly and uses the camera images for cor-
recting the drift in the position estimates due to the accumu-
lated errors of inertial sensors. Due to limited computation
resources available on smart glasses, the computation time
for image matching, which is needed to correct the position
estimate, is high. We propose a feature reduction method
that can significantly reduce the computation time for im-
age matching but with little compromise on accuracy. We
compare our method against Travi-Navi, which is a state-
of-the-art localisation system that uses both inertial and im-
age sensors. Our evaluations show that our proposed method
achieved a mean localisation error of 3.3m which is 64% less
than that of Travi-Navi.

Categories and Subject Descriptors
C.5 [COMPUTER SYSTEM IMPLEMENTATION]:

Miscellaneous; B.8.2 [PERFORMANCE AND RELIA-
BILITY]: Performance Analysis and Design Aids

General Terms
Design, Performance

Keywords
Indoor localisation, Smart glasses, Feature reduction

1 Introduction
Indoor localisation is a well researched topic in the last

two decades. Many methods have been proposed to provide
indoor localisation services for embedded devices. These
methods can be divided into two categories: infrastructure

based and infrastructure free. For infrastructure based meth-
ods, localisation is realised with the help of external equip-
ment. A well known example of infrastructure based method
is WiFi fingerprinting [37, 26]. The key idea of WiFi fin-
gerprinting is to use the signal strength of a few WiFi access
points as the signature of each location. Although WiFi fin-
gerprinting has met with some success, a major challenge it
faces is that the WiFi signature is not static and changes over
time. This means frequent re-training is required to ensure
its feasibility. For infrastructure free method, localisation
is realised with the embedded device alone with little help
from external equipment. A well known example of infras-
tructure free method is Pedestrian Dead Reckoning (PDR).
PDR makes use of Inertial Measurement Unit (IMU) sensors
commonly available on embedded device. An IMU typically
includes a 3-axis accelerometer, gyroscope and magnetome-
ter. In principle, one can obtain position estimate by nu-
merically integrating the IMU measurements. However, the
reality is much more complex due to noisy measurements,
un-structured way in which the subject carries the embed-
ded device and the fact that walking is not a steady move-
ment. These challenges drive the researchers to derive many
new methods to improve the accuracy of PDR for indoor
localisation, e.g. by using particle filters [19, 29], correc-
tions by using WiFi [34, 41], landmarks [23] or indoor floor
plan [26, 15]. In this paper, we propose a new localisation
method which combines PDR and camera on smart glasses.
To be best of our knowledge, this is the first attempt in using
only smart glasses for indoor localisation.

Smart glasses, e.g. Google Glass and Vuzix M100, are
a new class of wearable embedded device that are worn like
sun glasses or prescription glasses. A key advantage of smart
glasses is that they provide a way for a user to interact with
an embedded device in a hand-free manner. Motivated by
that, in this paper, we will instead focus on the use of smart
glasses for indoor localisation since it can provide a bet-
ter user experience than smart phones while walking. Most
smart glasses available today are equipped with IMUs and
camera sensors. Both of these sensors can be used for lo-
calisation, either on their own, or together. We know from
the previous discussion that using IMU measurements alone
for localisation by using PDR does not provide accurate lo-
calisation estimates. A common problem is that the localisa-
tion estimation error grows over time, which is referred to as
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drifting. Instead of using IMU sensors, one can use the im-
age sensor on smart glasses for indoor localisation. The basic
idea is to use visual features to characterise each location. By
comparing the visual features at the current location against
those stored on the device, one can determine the location of
the device. In fact, a very successful vision-based Simultane-
ous Localisation and Mapping (SLAM) algorithm invented
by robotics researchers is FAB-MAP [9, 10]. However, a
pure vision-based localisation algorithm is not feasible for
smart glasses because of limited power supply and compu-
tation resources. For example, our experience shows that
some smart glasses take nearly 30 seconds to process an im-
age with a resolution of 960× 720 to provide a greater than
90% accuracy to match an image to those in the database.
The resource limitation can severely limit the sampling rate
of the camera and the resulting localisation estimate is less
than desirable.

Since neither pure PDR-based nor pure vision-based lo-
calisation provides good localisation estimate, this paper
proposes a new localisation method which fuses PDR and
vision. We call our proposed method NaviGlass. Due to
high resource consumption of vision-based component, Nav-
iGlass uses PDR predominantly and uses vision to correct the
drift of position estimate in PDR. The key challenge in real-
ising NaviGlass is to reduce the computation time needed to
process an image. In particular, this paper makes the follow-
ing contributions:

• The time to match an image to those in the database in-
creases with the number of visual features being used.
In order to reduce the time required to perform match-
ing, we propose a novel feature reduction method which
identifies the informative visual features. The method
makes use of the concept of mutual information to dis-
card uninformative features or to merge features. We
will show that this method is effective in reducing the
number of features and consequently the time to do
matching.

• We implemented our NaviGlass on real smart glasses
and compared NaviGlass against Travi-Navi, which is
a state-of-the-art indoor localisation method that uses
both PDR and vision. Our results show that Navi-
Glass has a better image matching accuracy compared
to Travi-Navi. Also, NaviGlass achieves a mean local-
isation error of 3.3m, which is 64% less than that of
Travi-Navi.

The rest of the paper is organised as follows. Sections
2 and 3 review the related work and technical background.
Section 4 describes NaviGlass. Performance evaluation of
NaviGlass is given in Section 5. Finally, Section 6 concludes
the paper.

2 Related Work
Many indoor localisation methods have been proposed to

localise mobile and embedded devices. Given this paper uses
both PDR and vision-based localisation methods, the discus-
sion here will be predominantly focused on these two classes
of methods.

PDR uses IMU — accelerometer, gyroscope and magne-
tometer — to estimate the position of the subject [19, 34].

The concept behind PDR is pretty simple. Since accelera-
tion is the second derivative of position, one can obtain po-
sition from acceleration using numerical integration. How-
ever, there are many barriers to achieving accurate indoor
localisation with PDR using IMU measurements from em-
bedded devices. First, the IMU measurements from embed-
ded device are a lot more noisier than those high end IMU
units for aviation [34]. As a result, a naı̈ve numerical inte-
gration will result in accumulation of measurement errors.
Researchers have tried to counter measurement noise by us-
ing Kalman filters and particle filters [15, 19]. Second, peo-
ple carry embedded devices in many different ways: in their
hands, pockets, hand bags etc. [16]. Therefore, researchers
need to derive methods to rotate the measurements to the
movement axis. Third, the movement of human is inherently
jerky, rather than steady. This drives researchers to provide
accurate step detection and counting [19, 30]. Fourth, mag-
netic distortion exists in an indoor environment due to the
use of magnetic materials (e.g. iron, steel) in the construc-
tion of modern buildings [7, 14]. The consequence is that
heading estimation based on indoor magnetometer measure-
ments can deviate from the correct heading by up to 180◦.
Such magnetic distortion has to be corrected. All these is-
sues cause the PDR location estimate to be highly erroneous.
Many solutions have been proposed to address these issues.
Some methods rely on IMU sensing alone and use one type
of measurements to correct the error in another type of mea-
surements [19]. The majority of PDR methods use exter-
nal knowledge to correct location estimations . The external
knowledge that researchers have investigated include using
floor plan [15], landmarks[23], WiFi signal strength [5, 20]
and access points [35], earth’s nominal magnetic field [7],
vision [41].

Vision-based localisation is also a well-studied research
area. FAB-MAP [9, 10] is a successful vision-based SLAM
algorithm in robotics based on recursive Bayes estimation;
we will explain FAB-MAP in greater details in Section 3.
The accuracy of vision-based localisation methods critically
depends on the accuracy of matching the image at the cur-
rent location to those in the database. An accurate image
matching method is based on the Bag of Words (BoW) con-
cept which has been applied in many vision-based localisa-
tion systems [17, 18, 28]. More sophisticated vision meth-
ods have also been applied, for example 3D model [40]
and panoramic images [31]. Due to the extensive computa-
tion needed for image matching, either the platform must be
equipped with significant computing resources or the com-
putation to be carried out on a remote server [18]. Unfor-
tunately neither of these solutions are feasible for embedded
platform because of limited computational resources avail-
able on board or limited bandwidth available on board to
transfer images. Instead in this paper, we investigate the use
of feature reduction method to reduce the computation re-
quirements on embedded platform.

With the development of smart glasses, many new appli-
cations have been proposed, e.g. social contact [38], cus-
tomer analytics [27], cognitive assistance [13], human recog-
nition [33] and others. These applications make extensive
use of camera and sensors. The challenge of limited com-
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putation resources also applies to these applications on off-
the-shelf smart glasses. The feature reduction methodology
proposed in this paper can potentially be applied to these ap-
plications as well.

This paper makes use of visual information to correct
PDR location estimate. Two earlier examples of such method
can be found in [41, 2]. In particular, we make a compari-
son with Travi-Navi [41] and our evaluation shows that our
proposed method outperforms Travi-Navi.

The computation bottleneck in our system is due to the
long time to match an image to those in the database in or-
der to determine the subject’s location. The time required for
matching is an increasing function of the number of features.
A method to address this bottleneck is to use informative fea-
tures for matching. Feature selection and feature reduction
have been widely investigated in the past. A well-known
feature selection method is Principal Components Analysis
(PCA) [22] but it is difficult to apply such methods to bi-
nary features that are used FAB-MAP. An alternative ap-
proach is to apply mutual information to select good features
[36, 25, 12]. This is based on the information theoretic crite-
rion that the best set of features is the one that maximises its
mutual information with the decision classes [12]. Our pro-
posed feature selection method is based on the same criterion
but we introduce the concept of feature merging which does
not seem to have been used before.

Since a smart phone has an IMU and an on-board camera,
it is in principle possible to implement a localisation method
on a smart phone using IMU and vision inputs. However, we
would like to argue against this idea from a practical point of
view. In order to correct the localisation estimate, the smart
phone has to be carried in such way that its camera is facing
in the direction that the user is walking. There does not ap-
pear to be a practical way for a user to do that. It is rather
awkward to ask a user to hold the smart phone by hand so
that its camera is facing the direction that the user is walk-
ing. Although a user can carry the phone on a lanyard but
the camera is likely to produce blurred images, which are
not useful at all. We therefore see smart glasses as a better
way to carry an IMU sensor and a camera, compared to smart
phones.

3 Technical Background
Our proposed indoor localisation method NaviGlass is

based on FAB-MAP, which is a state-of-the-art vision-based
SLAM algorithm for robots working in the outdoor environ-
ment. This section provides a technical overview of FAB-
MAP to make this paper self-contained. For complete de-
scription of FAB-MAP, see [9, 10].

FAB-MAP is an algorithm derived primarily for loop-
closure detection, which means detecting whether the robot
has returned to a place that it has been before, in a large
unknown environment. FAB-MAP realises loop-closure by
using the appearance at each location. When a robot which
is equipped with FAB-MAP moves around, it takes pictures
of the environment and extracts visual features from the pic-
tures. To the robot, each location is characterised by the vi-
sual features present in the pictures taken at that location.
When the robot moves to a different location, it wants to tell

whether it has moved to a place that it has never been before
or a place that has been previously visited. The robot does
that by taking pictures of the current location and extracting
visual features. It then compares the visual features of the
current location against those of the previous places that it
has visited. If a match occurs, then the robot knows that it
has returned to a previously visited location; otherwise, the
robot decides that it has gone to a new location. In this pa-
per, we will use the term image matching to refer to the
comparison of visual features at the current location against
the stored features from earlier visited locations.

FAB-MAP is a highly accurate SLAM algorithm for a
couple of reasons. First, it uses robust visual features such as
Speeded Up Robust Feature (SURF) [3]. Second, FAB-MAP
uses a Bayesian method to compute the posteriori probabil-
ity for image matching. It is a fine-grained method requiring
the probability distribution of the visual features at various
location. We will now give further description FAB-MAP
which are important for understanding the rest of this paper.

When FAB-MAP captures an image, it determines the vi-
sual features in the image. In particular, we will assume that
SURF features are used. SURF is a popular method to ex-
tract visual features from images. In particular, it extracts
features which are scale invariant. This makes SURF fea-
tures robust because useful visual features should be present
in all the spatial scales. SURF features can be extracted by
a Hessian detector which computes the Hessian at a number
of spatial scales. The number of SURF features in an image
can be controlled by an Hessian threshold.

FAB-MAP uses the Bag of Words (BoW) framework to
represent the visual features. Assuming that the robot has
been to a number of locations and has taken pictures at these
locations. The robot has also extracted visual features of
these locations. Within the BoW framework, each visual fea-
ture is considered as a visual word and each location is char-
acterised by a set of of visual words found at that location.
The collection of all the visual words from all the locations
is known as the vocabulary. Let V denote the vocabulary
which contains |V | visual words. The robot takes an image
at time k and extracts the visual words (= visual features)
from the image. This image taken at time k can be charac-
terised by the |V |-dimensional vector Zk = {z1,z2, ...,z|V |}
where z j is a binary variable indicating whether the j-th vi-
sual word is observed in the image taken at time k. (The
vector Zk will be referred to as a BoW vector and the collec-
tion of BoW vectors at a number of locations form a BoW
matrix.) At time k, the robot wants to know whether it is
located at a place Li that it has visited before. It does that
by estimating the posteriori probability that it is at location
Li given all the past observations Z0:k available up to time k.
By using recursive Bayesian estimation, we have

p(Li|Z0:k) =
p(Zk|Li,Z0:k−1)p(Li|Z0:k−1)

p(Zk|Z0:k−1)
(1)

It is difficult to calculate the right-hand side of Eq. 1 exactly
because it requires probability distribution of very high di-
mension. To simplify calculations, FAB-MAP assumes that
the current observation Zk at time k is independent of the past
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Figure 1: The structure of our proposed indoor localisation method NaviGlass.

observations Z0:k−1, i.e. it assumes that

p(Zk|Li,Z0:k−1)≈ p(Zk|Li) (2)

With this simplification, the goal is now to estimate p(Zk|Li).
This probability calculation is also difficult because it re-
quires the joint probability distribution of z1, z2, ... , z|V | at

location Li, which is a probability distribution of very high
dimension because of the number of visual words |V | in the
vocabulary is large. FAB-MAP simplifies this calculation
by using Chow-Liu Tree [6] which is a method of approx-
imating a high dimension joint probability distribution and
is optimal in some information theoretic criterion. A Chow-
Liu Tree can be derived by using only the joint probability
distribution of each pair random variables, which can be es-
timated empirically using only second order statistics. With
Chow-Liu Tree, the probability p(Zk|Li) can be computed
using first and second order probability on z j.

FAB-MAP is a popular SLAM method among robotics
researchers because it gives good accuracy. However, FAB-
MAP requires extensive computation in order to determine
the location. This can be a serious issue in indoor localisation
because most embedded devices have only limited computa-
tion power. In the next section, we will explain how we can
adapt FAB-MAP to work in a resource constraint embedded
platform to carry out accurate indoor localisation.

4 NaviGlass
This section presents an overview of our proposed indoor

localisation method NaviGlass on smart glasses. Figure 1
shows a block diagram depicting the data processing com-
ponents in NaviGlass.

4.1 Overview of NaviGlass
Figure 1 shows that NaviGlass makes use of both IMU

and camera. The IMU is for PDR. The image is used to
correct the inaccuracies of PDR by matching an image to a
location, based on the FAB-MAP framework. The method
begins with off-line training to obtain a low-complexity de-
scription of the image features at each location. The online
operations consist of a number of components: step detec-
tion, image taking, PDR and data fusion.

We assume that the smart glasses will be used for local-
isation within a particular target area in which the off-line
training takes place. During the training, a subject walks
around the area with smart glasses on. The smart glasses
take picture of the environment at a uniform sampling rate.
At the end of the walk, the pictures are transferred to an off-
line server for processing. The pictures are first tagged with
the correct location. Features are then extracted from the
images. The vocabulary consists of all the features found
among the training image set. Following FAB-MAP, a BoW
matrix can be computed based on the vocabulary. The role
of the BoW matrix is to match an image taken during the
online operation to a location in the target area. The size
of this BoW matrix is large due to the large number of fea-
tures. The number of features has a significant impact on the
amount of time it takes to process and match an image dur-
ing the online operation of the localisation algorithm. The
time required is exacerbated by the limited computation re-
sources available on the glasses. In Section 4.2, we present a
feature reduction method which reduces the number of fea-
tures while maintaining a good image matching accuracy for
our type of image matching problem. We then use the re-
duced BoW matrix to compute a Chow-Liu tree for image
matching based on the FAB-MAP framework. Both the re-
duced BoW matrix and Chow-Liu Tree will be stored on the
glasses for online localisation.

Since IMUs have lower energy consumption, our localisa-
tion is primarily based on PDR. For PDR, we use accelerom-
eter readings to detect the steps and the gyroscope to deter-
mine the direction of movement. In order to cope with the
noise in the IMUs, we use a particle filter to produce a po-
sition estimate. It is well know that the localisation error of
PDR grows over time (drifting). Our proposal is to use cam-
era images to correct this drift where image matching is to be
performed in the FAB-MAP framework. Since the accuracy
of image matching depends strongly on the quality of image
taken by the camera [41]. Our system avoids taking images
when the user is walking at high acceleration in order to re-
duce the chance of getting a blurred image. We describe our
step detection method and image taking method in Section
4.3. Since image matching does not have 100% accuracy, it
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Figure 2: Time consumption when processing images using
different number of features and resolutions on Vuzix M100
Glass

is possible for an incorrect image matching result to produce
highly incorrect position estimate. We therefore put in ad-
ditional safe guard to detect an occasional incorrect image
matching. The location of the image matching result is then
incorporated (fused) into the particle filter to correct the posi-
tion estimate. We will describe our image matching method
and our data fusion method in Section 4.4. Note that our pro-
posed method does not use the floor plan of the target area
as prior information though such information can be easily
introduced into the particle filter.

4.2 Feature Reduction Methodology
Figure 2 shows that there is a positive correlation between

the number of features and computation time. However,
standard feature reduction algorithms based on PCA [22]
and mutual information [25] cannot be applied to our type
of features. Hence, we propose a customised off-line feature
reduction algorithm that can significantly reduce the compu-
tation time on commodity smart glasses for image matching
but with little compromise on accuracy.

We start by setting up the feature reduction problem. We
assume that we have taken m images at m different locations
at the training phase. (Note that for simplicity, we are as-
suming that there is an image for each location. The feature
reduction method can also be applied when there are multi-
ple images for each location.) Our aim is to use the visual
features in these m images to identify the m different loca-
tions. We assume that initially each image is characterised
by n binary features. We will use i to index the images, and
q and r to index the features. We use the number zi,q ∈ {0,1}
to indicate whether the q-th feature is present or absent in
the i-th image. If zi,q = 1, then it means that the q-th feature
is present in the i-th image; otherwise, zi,q is zero. The aim
of the feature reduction algorithm is to reduce the number of
features being used in the image matching problem.

Our feature reduction algorithm takes the number of fea-
tures to be eliminated as the input. The algorithm eliminates
the features by using up to two methods. If the first method

is sufficient to reduce the number of features to its target
value, then the second method is not used. Only when the
first method has been exhausted and further feature elimi-
nation is needed to meet the target value on the number of
features, then the second method is used. We begin with the
first method.

4.2.1 Similarity Based Feature Reduction
The first method uses a coarse-grained method to identify

features that do not help us to differentiate between the im-
ages by calculating pairwise similarities between features.
Consider the vector �zq = [z1,q,z2,q, ...,zm,q] which indicates
whether the q-th feature is present or absent in the m images.
For example, if m = 4 and�zq = [1,1,0,0], then it means that
the q-th feature is found in the first and second images, but
not in the third and fourth images.

In order to identify features that are similar, we will work
with a pair of features at a time. In order to fix the idea, we
first present an example assuming that m = 4. We assume
that for the q-th feature, we have�zq = [1,1,0,0]. Now con-
sider the r-th feature where r �= q and we have�zr = [1,1,0,0].
In this example, we have zi,q = zi,r for all i, it means both fea-
tures q and r are either both present or both absent in each
image. This implies that one of such features can be elimi-
nated because one of them is redundant.

In general, consider two vectors �zq = [z1,q,z2,q, ...,zm,q]
and�zr = [z1,r,z2,r, ...,zm,r] for, respectively, the q-the and r-
th features. If these two vectors�zq and�zr are similar, in the
sense that zi,q = zi,r for most i, then these two features pro-
vide similar information and we can also drop one of them.
We therefore define a similarity measure between the two
features by:

Sim(�zq,�zr) =
∑i I(zi,q = zi,r)

m
(3)

where I() is an indicator function which takes on the value
of 1 if the expression inside the parentheses is evaluated to
be true. We define a threshold δSim and we only consider
elimination if Sim(�zq,�zr) ≥ δSim, i.e. the vectors are suffi-
ciently similar. If elimination is to be carried out, we make
a random choice between q and r, as they are similar and
contribute almost the same information to image matching.

We use this similarity measure to iteratively to reduce
the number of features. For all the features that are still re-
tained in the dictionary, we compute the similarity measure
Sim(�zq,�zr) for every pair of features q and r. If there ex-
ist pairs of features whose similarity measure exceeds the
threshold δSim, we choose the pair of features which has the
highest similarity measure (ties are broken randomly) and
eliminate one of the features in the pair. We repeat this elim-
ination process until: (1) If we reach the target number of
features, the algorithm is terminated; or (2) If all pairs of re-
maining features have a similarity measure below δSim and
the target number of features has not been met, the algorithm
proceeds to use the second method to eliminate features.

4.2.2 Mutual Information Based Feature Reduction
The second method is to reduce the number of features

by using the concept of mutual information. We start by re-
calling a result from Information Theory on how the choice
of features impacts on the classification error in supervised
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learning. Consider a classification problem with m classes
denoted by C = {c1, ...,cm} and n possible features indexed
by 1,2, ...,n. Let F = {1,2, ...,n} denote the set of all fea-
tures. The number of features n can be large and we may
only want to select a subset of features from F for classifica-
tion. It is obvious that different subsets of F gives different
classification error, but how we want to know which subset
is better. Let F1 and F2 be two different subsets of F , and
we will call them feature sets. We use MI j to denote the mu-
tual information between the classes C and feature set Fj. A
result from Information Theory says that if MI1 > MI2, then
the use of feature set F1 will lead to a smaller classification
error, and vice versa [21]. This means that a good feature set
should maximise the mutual information between the feature
set and the classes. The importance of this result is that it
gives us a method to evaluate the goodness of different fea-
ture sets by calculating mutual information. However, it is
difficult to use this result in practice because we will need to
have the joint probability distribution of all the features in a
feature set, which is difficult to obtain empirically. We there-
fore use a method which requires only the joint probability
distribution of a pair of features. In other words, we only
consider a pair of features at a time.

The proposed method requires performing the same cal-
culation over each pair of features. Let q and r be a pair of
features. We want to calculate the mutual information be-
tween the set of classes C and the feature set {q,r}. The
calculation of mutual information requires the probability
distribution of the features. Let Zi,q denote a binary ran-
dom variable which can take on values from {0,1}. Let
p(Zi,q = 1) (resp. p(Zi,q = 0)) denote the probability that
the q-th feature is present (absent) in image class ci where an
image class consists of all the images collected at a partic-
ular location. We use p(Zi,q) as a short hand to denote that
probability distribution p(Zi,q = zi,q). The mutual informa-
tion between the set of all classes C and the feature set {q,r},
which uses both features q and r is:

MI(C;{q,r}) = ∑
i

∑
zi,q,zi,r

p(ci,Zi,q,Zi,r)log(
p(ci,Zi,q,Zi,r)

p(Zq,Zr)p(ci)
)

(4)
where p(ci,Zi,q,Zi,r) is the joint probability distribution of
features q, r and classes C; and p(Zq,Zr) denotes the
marginal probability over image index i.

Instead of using both features q and r, we consider the
possibility of merging binary features using logical AND and
NOT operations. Let zi,qr denote the merged feature which
is also binary. There are four ways that we can define the
merged feature zi,qr:

• zi,qr = 1 if zi,q = 1 and zi,r = 1; otherwise zi,qr = 0

• zi,qr = 1 if zi,q = 1 and zi,r = 0; otherwise zi,qr = 0

• zi,qr = 1 if zi,q = 0 and zi,r = 1; otherwise zi,qr = 0

• zi,qr = 1 if zi,q = 0 and zi,r = 0; otherwise zi,qr = 0
The mutual information between the classes and the

merged feature is given by

MI(C;qr) = ∑
i

∑
zqr

p(ci,Zi,qr)log(
p(ci,Zi,qr)

p(Zqr)p(ci)
) (5)

The merging of features will lead to loss of information,
so we expect MI(C;{q,r})≥ MI(C;qr). However, if the gap
between MI(C;{q,r}) and MI(C;qr) is small enough, we ex-
pect the merged feature still contains the information in the
two individual features combined. For this merging, we de-
fine a positive threshold δMI and only proceed with merging
if MI(C;qr)≥MI(C;{q,r})−δMI , i.e. the use of the merged
feature does not lead to significant decrease in mutual infor-
mation.

The elimination of features using the this method pro-
ceeds iteratively as well. For each pair of features q and r
that are still retained in the vocabulary and for each of the
four ways to merge q and r, we compute the decrease in mu-
tual information MI(C;{q,r})−MI(C;qr), respectively. If
at least one decrease of mutual information is less than or
equal to δMI , the algorithm chooses the pair of features and
the way of merging that lead to the least decrease in mutual
information, and the algorithm proceeds to merge those two
features. The algorithm iterates until either no more features
can be merged or the target number of features is reached.
To evaluate this innovation, we will study the performance
of this feature reduction algorithm in Section 5.2.

4.3 Step Detection and Avoiding Blurry Im-
ages

Figure 3: Step detection using time series data of accelera-
tion (a) raw sensor readings (b) filtered sensor data (c) bina-
rised data for step cycle detection

Our localisation method NaviGlass uses the readings
from the accelerometer and gyroscope to determine, respec-
tively, the step length and the heading. The algorithms we
use are fairly standard. For step detection, let ax,t denote the
acceleration at time t in the x-direction etc. We first compute

the total acceleration at =
√

a2
xt +a2

yt +a2
zt at each sampling

time t. Fig. 3(a) shows a trace of at from one of the exper-
iments. We apply a low-pass filter with a cut-off of 6Hz to
filter this trace to obtain a smoother trace shown in Fig. 3(b).
We then apply a threshold to binarise this smoothed trace to
obtain Fig. 3(c). A step cycle is a combination of a consec-
utive 0 and 1, shown between red lines in Fig. 3. Similarly,
we can obtain the heading change from gyroscope when a
step is detected by projecting the measurements to the world
coordinate system for more accurate angle change [15].
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In order to reduce the chance of blurry images being
taken, the smart glasses will only take an image when the
total acceleration is not too large. When the smart glasses
want to take an image, they first determine the previous time
instance at which the total acceleration peaked. They then
compare the current time against the last time peak accelera-
tion occurred, if the gap is less than a threshold 0.1s, then we
delay the capture the image until 0.1s has passed from the
previous peak. This threshold of 0.1s is not likely to cause
much delay. Our observation is that 88% of a step lasts for
0.6±0.2s and with the sampling interval for images set at 2s,
an additional delay of 0.1s may extend the sampling interval
to up to 2.1s, which is a negligible increase.

Another occasion that blurry images can be produced is
when the subject makes a turn. This is because the camera
takes some time to use its auto-focus mechanism after a turn
is made. We therefore avoid taking an image soon after the
subject has turned and we do this based on the gyroscope
readings.

4.4 Particle filters and data fusion
In order to cope with noise in the IMU sensors, we use

particle filters [1] to obtain a more stable estimate. Our
particle filter uses the step length and heading as the in-
put. The filter assumes that the noise in the IMU sensors
are zero mean Gaussian. We assume the particle filter uses
N particles. At each time t, each particle is characterised by
a quadruple. For the i-th particle at time t, the particle is
Pi,t = (xi

t ,y
i
t ,θi

t ,w
i
t) where (xi

t ,y
i
t) are the x-and-y coordinates

of the particle, θi
t is the heading of the particle and wi

t is the
weight of the particle. Note that at each time t, the sum of
weights is normalised, i.e. ∑i wi

t = 1. The localisation posi-
tion estimate of the subject at time t is the weighted average
of the positions of the N particles. The estimated x- and y-
coordinates of the subject at time t are, respectively, ∑i wi

tx
i
t

and ∑i wi
ty

i
t .

Note that particle filters have been used together with
floor plan of a target area to improve localisation esti-
mate [26]. This can be done by setting the weight those par-
ticles that move in a unrealistic manner, e.g. walking through
walls or glass panels, to zero. In this paper, we want to fo-
cus on studying the improvement that can be made by us-
ing image matching. We therefore do not incorporate floor
plan in the particle filter. However, floor plans can be eas-
ily incorporated into our particle filter to further improve the
localisation estimate.

4.4.1 Drift Correction
A major problem with PDR is that the position estimate

drifts over time. Our aim is to use image matching to correct
this drift. Assuming that an image is taken at time t and our
matching algorithm is able to match this image to its correct
location. We can correct the drift by setting the position es-
timate at time t to the matched location of image. However,
image matching is not perfect and error does occur. Also, in
order to cope with the computation constraint, we reduce the
number of features used in matching, this has the effect of
increasing the matching error. We therefore need a method
to counteract the possibility of a matching error.

Our method does not use the image matching result of one

image to trigger the process of correcting the position esti-
mate from the particle filter. Instead, we only trigger the cor-
rection if the matching of three consecutive images produces
consistent result. Let Pos1, Pos2 and Pos3 denote the posi-
tion estimates from three consecutive images. Since these
images are collected over a gap of about 2s, the distance be-
tween consecutive estimates cannot be more than 2.2m given
the normal walking speed. We therefore check whether the
distance between Pos1 and Pos2, as well as that between Pos2

and Pos3, is consistent with this prior knowledge. If yes, then
we accept the last estimate Pos3 as a correct estimate and use
it to correct the position estimate from the particle filter. If
the position estimates Pos1, Pos2 and Pos3 are not consistent,
we do nothing.

We now explain how we fuse the position estimate from
Pos3 with the particles’ positions. Let x̂t and ŷt denote the
position estimate from the image Pos3. What we want to
do is to make the weights of those particles that are close to
(x̂t , ŷt) to have a higher weight. Consider the i-th particle,
we compute the distance between this particle and (x̂t , ŷt),

which is given by Disi
t =

√
(xi

t − x̂t)2 +(yi
t − ŷt)2. We adjust

the weight of the ith particle as:

wi
t = e−

Disi
t

r (6)

where r is a tunable parameter; the bigger r is, the less effec-
tively such update works. Once the new weights are calcu-
lated, they are normalised so that their sum is unity.

5 Evaluation
This section aims to evaluate the performance of our pro-

posed localisation method NaviGlass. Our experiments were
conducted on the Vuzix M100 smart glass platform [32]
which runs the Android Operating System. These smart
glasses is based on the Texas Instrument OMAP4460 pro-
cessor running at 1.2GHz, 1 GB of RAM and 4GB of flash
memory. Its sensors include a 3-axis accelerometer, a 3-axis
gyroscope and a 5-MP camera.

5.1 Experimental Overview
We implemented NaviGlass on the Vuzix M100 Glasses.

We implemented our own PDR module which provides step
counting and heading estimation, see Section 4.3. NaviGlass
uses image matching to correct the PDR location estimates
as described in Section 4. The image matching is based
on the FAB-MAP framework. We based our work on the
open-source FAB-MAP code in the OpenCV library (Ver-
sion 2.4.9) [24]. The OpenCV code is written in C++ and
we use the Java Native Interface (JNI) for interfacing. The
FAB-MAP code offers a number of different choices of im-
age descriptors and we have chosen to use SURF [3] image
descriptor for efficiency and accuracy.

We compare NaviGlass against Travi-Navi, which is the
state-of-the-art localisation method which uses both PDR
and images. We implemented Travi-Navi on the Vuzix plat-
form. The PDR module in our Travi-Navi implementation is
identical to that of NaviGlass. The image matching module
of TraviNavi uses the BoW framework [8] followed by a lin-
ear SVM classifier [11]. We used the SVM code from [4].
For fair comparison, both Travi-Navi and NaviGlass use the
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(a) Results of testing data from same day
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(b) Results of testing data from different days

Figure 4: Matching accuracy vs. number of features

same SURF image descriptor. Note that Travi-Navi also uses
WiFi fingerprint and magnetic distortions to correct the posi-
tion estimates, however we have not incorporated them into
our implementation. This is because WiFi coverage is weak
in some application scenarios such as underground parkings
and stadiums, and WiFi fingerprints and magnetic field are
known to be dynamic over time and therefore difficult to col-
lect and maintain. Furthermore, NaviGlass can also benefit
from WiFi fingerprint and magnetic field distortion correc-
tion similar to Trivi-Navi if they are available.

We conducted the experiments on our university campus.
Ten subjects (2 females and 8 males) participated in data col-
lection and system validation. Further experimental details
will be provided later.

5.2 Image Matching Accuracy
This section evaluates the accuracy of image matching.

The experiments were conducted along a 125m long looped
path within a laboratory. The subjects were asked to walk
along this path wearing the Vuzix smart glasses, which were
programmed to take 10 images per second with a resolution
of 320 × 240. The training images were obtained by one
subject walking along the designated path. We collected two
sets of test images. The first set of test images was collected
on the same day that training images were collected, while
the second test image set was collected a week after training
occurred. In both sets of test images, all 10 subjects walked
along the designated path for image collection. The ratio of
the number of images in a test set to the number of images in
the training set is approximately 10 : 1.

Our aim is to compare the image matching accuracy of
NaviGlass, FAB-MAP and Travi-Navi with varying number
of features. We first explain how we vary the number of fea-
tures. For FAB-MAP, the number of features is controlled
by using a threshold in the Hessian detector of the SURF
features [3]. For NaviGlass, we start with a large number
of SURF features (about 4500) and use the feature reduction
algorithm in Section 4.2 to reduce the number of features.
Travi-Navi uses the same features as FAB-MAP. Note that

NaviGlass uses maximum a posteriori probability to deter-
mine a match while Travi-Navi uses SVM.

In this section, we say a test image is a correct match if
the determined location of the test image is within 3 steps
(approximately 1m) from its true location. We report the ac-
curacy of each method by using the percentage of correct
matches, which is the total number of correct matches di-
vided by the total number of images in a test image set.

Figures 4(a) and 4(b) show the matching accuracy for the
test sets which were collected, respectively, on the same day
and one week later. Unsurprisingly, the matching accuracy
increases with larger number of features. For both test sets,
NaviGlass has the best performance, followed by FAB-MAP
and Travi-Navi. For example, when about 2000 features
were used, the accuracy of NaviGlass is 30% higher than
that of Travi-Navi. The use of test image set which was col-
lected one week after training data collection enables us to
test the temporal robustness of image matching. The match-
ing accuracy of three methods for the one week old test set
is lower than the same-day test set. The matching accuracy
of NaviGlass is 5% lower, while FAB-MAP and Travi-Navi
are respectively, 11% and 10% lower.

5.3 The Impact of Image Resolution
We investigate the impact of image resolutions on match-

ing accuracy and computation time on the Vuzix M100
platform. Figure 5 shows the matching performance of
NaviGlass and Travi-Navi when the number of features is
2107. We use 6 different image resolutions, from 960×720
down to 80×60. As expected, the matching performance
of both methods decreases when the image resolution de-
creases. The decrease in accuracies from 960×720 resolu-
tion to 160×120 resolution appears to be steady; the drop
in accuracy is pretty drastic after a resolution of 160×120.
For NaviGlass, the accuracies of matching 960×720 and
160×120 images are, respectively, 74% and 53%. The im-
age matching accuracies of Travi-Navi is about 7-10% lower
than that of NaviGlass.

Table 1 shows the time needed to process one image for
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Figure 5: Matching accuracy vs. image resolution

NaviGlass, FAB-MAP and Travi-Navi for different image
resolutions. The processing time includes the time to cal-
culate the SURF features and the time to perform an im-
age matching. The results in the table is based on using
2017 features. Note that all three methods require roughly
the same processing time. For NaviGlass and a resolution
of 160× 120, we require 1.73s of processing to achieve an
accuracy of 53.3%, which is 8% higher than TraviNavi for
the same image resolution. If we increase the resolution to
320×240, the computation time increases to 5.8s giving an
accuracy of 56.7%. This shows that a 3.4-fold increase in
computation time earns us little increase in accuracy. For
our further evaluation, we have chosen to use a resolution of
160×120.

Table 1: Processing time per image.

Resolution NaviGlass FAB-MAP Travi-Navi
960×720 28980ms 28477ms 30844ms
640×480 15578ms 16787ms 16023ms
480×360 8818ms 9845ms 9144ms
320×240 5801ms 6155ms 6451ms
160×120 1730ms 1865ms 1802ms

80×60 1301ms 1221ms 1355ms

5.4 The Impact of Camera Sampling Rates
This section evaluates the effect of image sampling rates

on localisation accuracy. For this evaluation, we marked the
path in the target area and asked the subjects to walk along
the marked path. We performed the experiments in two target
areas: in a laboratory and in a library. We want to test 9
different sampling intervals: 0.5, 1, 1.5, 2, 4, 6, 8, 10 and
12 seconds. For the experiments in the laboratory, the 10
subjects walked the path 6 times and each time a different
sampling interval was used; the sampling intervals used were
2, 4, 6, 8, 10 and 12 seconds. For the experiments in the
library, the 10 subject walked along the path only once using
a sampling interval of 0.5s purely for collecting the images
because the length of the path in the library is fairly long.

For the experiments in the laboratory with sampling inter-

vals in 2–12 seconds, the localisation was performed on the
smart glasses. Since the smart glasses do not have enough
computation resources to process the images if sampling in-
tervals in 0.5-1.5s are used, the localisation was performed
off-line. For the experiments in the library, all the localisa-
tion computation were conducted off-line by sub-sampling
the images.

For localisation methods, we use NaviGlass and FAB-
MAP. Note that FAB-MAP is a purely vision based locali-
sation method and PDR is not used in FAB-MAP. The goal
of this evaluation is to compare a PDR + vision localisation
algorithm against a pure-vision based localisation algorithm.

Fig. 7 shows the average localisation error for NaviGlass
and FAB-MAP for all the 9 different sampling intervals. The
results are obtained by averaging the results in the laboratory
and in the library. Note that the average results in the labora-
tory and the average results in the library are similar to those
in Fig. 7. The figure shows that NaviGlass can achieve a
much lower localisation accuracy for a given sampling inter-
val. It also shows that if one can optimise the computation so
that sampling interval can be reduced to 0.5s, then one can
realise a sub-metre accuracy.

Our system outperforms pure vision-based method FAB-
MAP for all sampling intervals. Note that FAB-MAP was
originally designed for localisation of robots in an outdoor
environment. There are two key differences between outdoor
robot localisation and indoor smart glass localisation. First,
robots can use multi or panoramic cameras to capture im-
ages but such facilities are not present for smart glass. Sec-
ond, the outdoor environment, especially the dense urban en-
vironment, offers many unique visual features to identify a
location. The same cannot be said for indoor environment,
especially the library environment in which we tested our lo-
calisation environment, where the scenes can be very similar.
This makes the library environment challenging for localisa-
tion with smart glasses.

5.5 Comparison with Travi-Navi
We compare the performance of NaviGlass against Travi-

Navi using the same test data. Note that we used localisation
accuracy (the concern of this paper) instead of pathway ac-
curacy as in Travi-Navi.

5.5.1 Accuracy
We conducted experiments in the laboratory and in the

university library, covering 948m2 and 3926m2, respectively.
Ten subjects were asked to walk along two specific routes,
shown in Fig. 8 and Fig. 9, respectively. During the ex-
periments, the smart glasses collected images of resolu-
tion 160× 120 at 0.5Hz. Figure 6(a) shows the cumulative
probability distribution of localisation error for NaviGlass,
Travi-Navi and PDR. PDR gives the worst accuracy because
of accumulation of error. With the help of image match-
ing, both NaviGlass and Travi-Navi performed better than
PDR. However, our proposed NaviGlass outperforms Travi-
Navi because of better image matching accuracy. NaviGlass
achieves mean localisation error of 3.3m, which is 64% less
than that of Travi-Navi. Fig. 6(b) shows the localisation er-
ror distribution for the library. It can be seen that the per-
formance in the library is worse than that in the laboratory.
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(a) Results in the lab (b) Results in the university library

Figure 6: Performance of our system and Travi-Navi
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Figure 7: Performance of different sampling rates

The library environment is more challenging for a few rea-
sons: (1) The path is much longer and has more turns. (2)
The scenes are very similar at some places, e.g. in an aisle
with bookshelves on both sides. (3) The scenes are more
dynamics with people and books changing. Despite these
challenges, NaviGlass again outperforms Travi-Navi.

Figures 8 and 9 compare the paths obtained from PDR
and NaviGlass in the laboratory and the library. The drifting
of the localisation estimates for PDR is clearly visible. These
figures also show that NaviGlass is capable of correcting the
drifts.

5.5.2 Resource Consumption
Table 2 compares the resource consumption of NaviGlass

and Travi-Navi. The figures in the table are obtained from
the average of 20 walks by the 10 subjects.

The first section of Table 2 shows the time needed to
match an image and the processing time of an image. Since

Table 2: Resource consumption on Vuzix Smart Glasses

NaviGlass Travi-Navi
Matching Time 115ms 87ms

Total Time 1730ms 1802ms

Display Energy 268mJ 259mJ
Camera Energy 175mJ 170mJ

IMU Energy 501mJ 532mJ
CPU Energy 1642mJ 1708mJ

Expected Battery Life 0.87h 0.78h

the time to process an image consists of two major tasks:
feature extraction and image matching, we see that feature
extraction has now become the dominant computation com-
ponent because we have optimised the time for image match-
ing using feature reduction.

The middle section of Table 2 shows the average energy
consumption for display, IMU, camera and CPU. The energy
consumption is obtained by using PowerTutor [39] which is
an Android application that reports power consumption in
real-time. It can be seen that the energy consumption is dom-
inated by that of CPU.

Vuzix M100 comes with a battery with a nominal capacity
of 550mAh. By using the average current (e.g. 632.2mA
for sampling rate 0.5Hz for NaviGlass), we can compute the
expected battery life for our localisation applications in the
last section of Table 2. In practice, the battery life is shorter
due to battery ageing.

Overall, Table 2 shows that the computation time, energy
consumption and expected battery life of both NaviGlass and
Travi-Navi are similar. Since NaviGlass has a better locali-
sation accuracy compared to Travi-Navi, our proposed local-
isation method is therefore superior.

6 Conclusion
This paper proposes an indoor localisation method called

NaviGlass for smart glasses. The key idea of NaviGlass is to
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(a) Results of PDR (b) Results of our system

Figure 8: Experiments in lab, showing ground truth (green), results from PDR and NaviGlass (Best view in colour)

(a) Results of PDR (b) Results of our system

Figure 9: Experiments in the library, showing ground truth (green), results from PDR and NaviGlass (Best view in colour)

use PDR as the primary localisation method and to use im-
age matching to correct the drift in PDR estimate. The key
challenge in using image matching on smart glasses is the
long computation time needed to match the images due to
large feature space and limited computational resources on
the smart glasses. We address this by proposing a feature
reduction method which provides informative features for
matching. We evaluate the performance of various compo-
nent of NaviGlass, including image matching accuracy and
computation time. We compare the performance of Nav-
iGlass against Travi-Navi and find that NaviGlass outper-
forms Travi-Navi by a good margin.
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