Thingtegrity: A Scalable Trusted Computing Architecture for the
Internet of Things

Tobias Rauter, Andrea Hoéller, Johannes lber, Christian Kreiner
Institute for Technical Informatics
Graz University of Technology
Graz, Austria

{tobias.rauter, andrea.hoeller, johannes.iber, christian.kreiner}@tugraz.at

Abstract

Remote attestation is used to prove the integrity of one
system (prover) to another (challenger). The prover mea-
sures its configuration and transmits the result to the chal-
lenger for verification. Common attestation methods lead to
complex configuration measurements (e.g., hash of all exe-
cutables), which are updated every time one of the software
modules changes. The updated configuration has to be dis-
tributed to all possible challengers since they need a refer-
ence to enable the verification. Recently, an idea of reducing
the complexity of the configuration measurement by taking
into account privileges of software modules has been pre-
sented. However, this approach has not been exhaustively
analyzed since, as yet, no implementation exists. Especially
in the Internet of Things (IoT) domain, where resources are
constrained strictly while devices are potentially physically
exposed to adversaries, attestation methodologies with re-
duced overhead are desireable. In this work we combine
binary-, property- and privilege-based remote attestation to
integrate a trusted computing architecture transparently into
IoTivity, an existing IoT middleware. As a first step, we aim
to enable to attestation of the integrity of complex devices
with different services to constrained devices. With the help
of an illustrative simulated environment, we show that our
architecture reduces the effort of bootstrapping trusted rela-
tions, as well as updating single modules in the whole sys-
tem, even if software and devices from different vendors are
combined.

1 Introduction

Studies predict the prevalence of connected devices in the
near future and estimate that there will be over 13 billion de-
vices by 2020 [1]]. Essentially, these devices are connected
sensors or actuators that measure or modify their environ-
ment. The high density of sensors potentially implies pri-

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2016

15—17 February, Graz, Austria

© 2016 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7

vacy issues whilst the ability to access actuators from any-
where may allow adversaries to control critical infrastruc-
ture. Recently, large scale TV manufacturers are warning
their customers not to discuss private information in front of
their devices [2], light bulbs reveal the owner’s WiFi creden-
tials [3]] and pacemakers have been controlled by unauthenti-
cated devices [4]]. Individuals are not the only target of adver-
saries. [Supervisory Control and Data Acquisition (SCADA)|
systems are also continuously attacked [S]]. Therefore, a lot
of research has been done to improve the authentication of
devices and the integrity and confidentiality of their com-
munication. However, even if a communication partner is
authenticated, how is it possible to ensure that the software
running on it is not harmful?

Remote attestation is used to assure the integrity of one
system (prover) to another (challenger). In order to achieve
this, the prover measures its configuration and cryptographi-
cally proves the integrity of this measurement with hardware
components like a [Trusted Platform Module (TPM)] [6] or
secure co-processors [7]. The integrity of the prover’s con-
figuration is verified by comparing the measurement against
a known value. The challenger therefore has to know all
possible ‘good’ configurations of the prover. In the resource
constrained embedded domain this technology has become a
wide research topic for different applications and at different
levels of abstraction [8, (9} [10, [11]].

Today’s systems are often comparable to the architecture
illustrated in Figure l1a. On the one hand, different types of
small devices are used for a particular purpose (e.g., a sen-
sor or an actuator). These devices are often constrained with
respect to energy and performance. On the other hand, cen-
tral stations such as gateways, field controllers or powerful
consumer electronics exist. These devices benefit from hard-
ware that is becoming increasingly powerful. Consequently,
it is desirable to integrate different services into one device
in order to reduce hardware cost. Such devices may con-
trol actuators based on sensor values or just connect differ-
ent segments in a bigger network to reduce the clusters to
maintainable sizes (i.e., gateways).

Whenever communication occurs, the corresponding de-
vice needs to ensure the integrity of the central station. Here,
the integration of different services on the central device
causes problems. Each sensor/actuator has to know a ref-
erence configuration that is composed of all services running

23

24

: Sensor Device 1: : Actuator Device : : Sensor Device 2

i | References: | | | | References: | | | | References:
os ii 0s ii os
svc1 P svcl e svC1
svcz H svcz H svcz
svcs e svcs e svcs
svce H svc4 e svc4

N S

Gateway *
] Scrvice 1 Service 2 Service 3 Service 4
oS

()

| Sensor Device 1. | Actuator Device | | Sensor Device 2

i | References: | | | | References: | : | | References:
os ii os ii os
svcz e svcz i
i svcs i
H H svca
Gateway Y v
D emmad SCTVice 1 Service 2 Service 3 Service 4
os

(b)

Figure 1. A common architecture: Many Constrained Devices communicate with a central device or gateway (Full
Device). The reference configurations on each device is traditionally composed of binary measurements of all gateway
modules (Ta) although only some of them are important for this specific device (Ib).

on the central device. Moreover, every time any of the ser-
vices is updated, the reference configuration on all other de-
vices has to be updated too. A superior solution has to reduce
the complexity of the reference configuration to a minimum,
as shown in Figure 1b. The challenger only has to know
all services that influence the communication partner. For
other services, the central station has to prove that there is no
possibility for them to influence the challenger’s services of
interest.

Previous approaches based on measuring software-
binaries [12]] or security properties [13, [14]] suffer from
the problems of too many possible configurations or the
requirement of a [Truste arty Systems
based on information flow analysis [15 [16] depend on
comprehensive access control policies for all modules on the
prover platform. Recently, the concept of privilege-based
attestation has been proposed [17]. If a module does not
have the privileges or permissions to harm the integrity of
the targeted function on the prover, the challenger does
not have to know a reference measurement. This approach
could significantly reduce the complexity of the reference
measurement list. However, until now no implementation of
this scheme exists.

In this work, we provide the first usable design of this con-
cept. We contribute a comprehensive trusted computing ar-
chitecture, implemented on top of an|Internet of Things (IoT)|
middleware. It combines binary-, property- and privilege-
based measurements with a focus on a low overhead. In par-
ticular, this paper provides:

* The integration of a trusted computing architecture into
ToTivity, an existing[loT| middleware. To the best of our
knowledge, this is the first comprehensive solution that
brings remote attestation at system level to this domain.

* A transparent remote attestation protocol. Security is
done under the application layer and high level services
can focus on functionality.

* The application of different remote attestation method-
ologies in the [oT] domain to reduce the set of known
reference configurations. Therefore, compared to exist-
ing solutions, the approach is also practicable for sys-

tems with a high amount of services/devices.
Moreover, we created an experimental test environment to

evaluate the architecture based on a virtual test-bed. Our so-
Iution provides simple methods for bootstrapping and con-
figuring trusted relationships to enable authenticity for inter-

device communication in ecosystems with device and vendor
diversity. Furthermore, the system enables investigation of
additional attestable properties for prospective devices and
services. Similar to many [[oT| middleware implementations
like ToTivity or AllJoyn, Thingtegrity distinguishes between
Full Devices and Constrained Devices. In this work, we fo-
cus on the attestation of the integrity of Full Devices to Con-
strained Devices by reducing the size and dynamics of the
configuration measurements. The attestation of Constrained
Devices is out of the scope of this paper and left for future
work.

The remainder of this paper is organized as follows: Sec-
tion [2] discusses related work. Section [3] describes the pro-
posed system. Subsequently, Section [4] provides implemen-
tation details and explains how the architecture is integrated
into ToTivity. Section [f] discusses the suitability of the ap-
proach based on an exemplar system that is introduced in
Section 5] In Section [7] the benefits and the drawbacks of
the system, as well as directions regarding our future work
are summed up.

2 Background and Related Work

Trusted computing generally aims to build more secure
systems by the implementation of different features. One
of these features is remote attestation. This section de-
scribes the basic process of this concept and discusses exist-
ing methods that generate configuration measurements and
verify them on the challenger.

2.1 Remote Attestation

Remote attestation is the process of proving the configura-
tion of a system (prover) to another entity (challenger). In or-
der to integrate this process, the prover has to provide a[Roof

of Trust for Measurement (RTM)|and a[Root of Trust for Re-|

porting (RTR)} The [RTM]is in charge to measure properties

that reflect the prover’s system integrity (i.e., the integrity of
all other software components on the system). Since mali-
cious software would be able to change the taken measure-
ments afterwards, a [RTR]is used to securely store this in-
formation and to protect it from malicious forging. Further-
more, the challenger has to comprise a policy or reference,
that enables the verification whether the measured configu-
ration represents a non-compromised system and a protocol
for secure exchange of this information has to be in place.
Usually, the challenger sends a random value, called
nonce, to request the prover’s configuration. The prover
signs its measurement (taken by the [RTM), as well as the

nonce with its private key. Both the storage of the mea-
surements and the signature is normally done by a dedicated
hardware (the[RTR]) to prevent software from tampering with
these values. One common way is to use a (6] and
perform the TPM_QUOTE operation. However, other tech-
nologies like ARM’s TrustZone [18]] or Intel’s [Trusted Exe-
[cution Technology (TXT)| [19] enable similar functionality.
The challenger is now able to verify whether the retrieved
measurement complies to its policy and check the signature
with the public part of the prover’s key in order to ensure
data integrity. Both, and TrustZone-based attestation
methodologies are too complex and expensive for many low-
end embedded systems. Therefore, more lightweight ap-
proaches to enforce isolation of security-critical code have
been introduced (e.g., [20]], [21]], [22]]). These solutions en-
able attestation of tiny devices and would extend our system
to also integrate mutual attestation for this class of devices.

2.2 Configuration Measurement and Verifica-
tion

In order to attest the integrity of different devices to each
other, the integrity of their configuration has to be measured.
Basically, the configuration is represented by the software
components running on the device. A variety of schemes
and implementations that tackle this problem exist in the lit-
erature. Remote attestation methods for binaries, properties,
security policies and platform-specific permission-systems
have been introduced. However, the mapping of these con-
cepts into the [[oT| domain is not a trivial matter due to re-
source and connectivity constraints.

The [[ntegrity Measurement Architecture (IMA)|[12] gen-
erates a measurement list of all binaries and configuration
files loaded by the system. The cumulative measurement
(i.e., hash) of the measurement list is extended into a
[form Configuration Register (PCR)| To attest the system’s
state, the prover sends the measurement list to the challenger
and proves its integrity with the help of the Binary
measurement approaches are not suitable for systems with
many different or dynamic configurations because each chal-
lenger has to maintain a comprehensive list of known ‘good’
configurations. Especially when system updates or backups
are taken into account, the set of possible configurations may
grow to an unmaintainable size. Moreover, the verification
of all binaries is not necessary every time. The challenger
might only be interested in modules which may affect the
integrity of the target software. Our work uses for the
attestation of high-privileged software components.

Property-based attestation [13| [14] overcomes some is-
sues of binary-based methods. A challenger is only inter-
ested in whether the prover fulfills particular security prop-
erties (e.g., strict isolation of processes). Therefore, a set
of possible platform configurations is mapped to different
properties. This approach eliminates the need for compre-
hensive lists of reference configurations on the challenger by
the introduction of a[TTP|which is in charge of the mapping.
Similar approaches focusing on privacy-preserving features
(23] do not need a[TTP|and use ring-signatures to protect the
prover’s configuration from exposure. In this paper, we use
this concept to sign reference measurements.

Another group of approaches use information flow anal-
ysis based on security policies [15, [16l]. These approaches
model all possible communications between processes. The
basic idea is that a high-integrity process is successfully
attested if all binary measurements are valid and there is
no possible information flow from low-integrity to high-
integrity processes. These approaches reduce the number of
platform configurations since only a small set of system and
high-integrity applications has to be measured. However,
they rely on well-defined security policies and the genera-
tion of additional filter-components. In our work, we do not
rely on existing policies or descriptions. They are generated
at execution time.

Similar to policy-based and information flow based meth-
ods, [PRIvilege-Based remote Attestation (PRIBA)|[[17] tries
to reduce the information needed by the challenger by using
privileges of software modules as trust properties. For soft-
ware modules that have privileged access on the executing
prover, binary measurement is used. All other modules are
parsed for privileged calls to the system library to generate a
privilege measurement of the module. The challenger is able
to decide whether the measured module violates the prover’s
integrity by checking the measurement against a policy. The
presented approach potentially reduces the size and the up-
date frequency of the challenger’s reference measurements.
However, until now only the basic concept has been pre-
sented and no implementation exists. Neither the measure-
ment of a modules’s privileges nor the verification against
the policy has been investigated. In our work we fill this gap
by implementing privilege measurements as a central part of
the trust properties used to attest a system’s configuration.

3 System Architecture

This section provides an overview of Thingtegrity, our
proposed trusted computing architecture and its underlying
ideas. In Section [} we will describe how the architecture
is integrated into an communication stack, namely the
IoTivity middleware.

3.1 Overview

Thingtegrity aims to enable mutual verification of the in-
tegrity between these devices by introducing a transparent
trusted computing architecture that enables remote attesta-
tion in this domain. To enable this attestation, the configura-
tions of the devices have to be measured.

In this work, we focus on the configuration of Full De-
vices. These devices usually have a more complex and dy-
namic configuration, while their challengers are constrained.
Therefore, the reduction of these measurements is an impor-
tant first step to generate a trusted computing architecture in
this domain. However, the architecture can be used for both
type of devices and will be extended in future work.

3.1.1 Remote Attestation
Whenever two services on two different devices want to
communicate they have to execute the following steps:

» Set up a secure connection: Before any communica-
tion, a secure connection that provides confidentiality,
integrity and authenticity has to be set up. This is done
with DTLS in the communication stack (IoTivity).

25

26

* Mutual attestation: Each service checks the measure-
ment of the counterpart’s configuration against the cor-
responding communication policy. This communica-
tion policy defines the rules the counterpart has to com-
ply with to be trusted.

* Actual communication: If both services trust their com-
munication partner, they can exchange information on
the secure channel.

As mentioned in Section [2.1] additional hardware support

(the is needed for storing and reporting these configu-
rations. For simplicity a is assumed to perform these
actions in the remainder of this paper (although other hard-
ware options like ARM’s TrustZone are also possible).

3.1.2 Configuration Measurement and Verification

While the [RTR] enables storing and exchanging of the
measurements in a tamper resistant way, components that
are able to measure (prover) and to verify (challenger) the
configurations are needed. As mentioned before, a vari-
ety of schemes exist for this challenge. Thingtegrity aims
to use privilege-based attestation [17]] to attest the integrity
of the different services of a Full Device. These devices
can contain many independent services. Therefore, this ap-
proach potentially minimizes the memory overhead for ref-
erence configurations, as well as the communication over-
head. However, only the theoretical idea has been discussed
for this privilege-based attestation. Hence, some technical
implications have to be considered here: First, the privilege
measurement unit requires ‘measureable’ accesses to priv-
ileged system functions. Therefore, we introduce an API
with appropriate access granularity, which is discussed later.
Furthermore, the system has to ensure, that these measured
accesses are not circumvented at runtime. This is ensured
by a sandbox. In order to enable a simple integration, we
designed the introduced API in a way that enables auto-
mated generation of sandbox-policies at service-startup. The
privilege-measurement unit is the RTM]for this type of mea-
surements. However, privilege measurements of this com-
ponent as well as other low-level components cannot be
taken. Therefore, we integrated the existing [12] im-
plementation for Linux into our framework to enable binary-
measurements.

For verification, we introduce a simple policy that enables
the decision whether the communication partner’s integrity is
intact. However, through the based measurements, the
reference configuration lists may be too big and too dynamic
to be handled in a network of constrained devices. Therefore,
we also implemented a property-based attestation scheme,
where measurement lists are signed by Trusted Third Parties
(TPP). Additionally, we use the authentication mechanisms
of the underlying communication protocol to integrate au-
thentication of the device hardware.

3.2 Framework Architecture

The components of a Full Device are shown in Figure [2]
Basically, a Full Device is composed of a hardware platform,
a software platform and services. The hardware provides
security features that enable any kind of remote attestation.
The software platform consists of the operating system, the
system libraries and the service framework.

The system libraries and framework provide functions to
access the operating system and helper functions for com-
mon tasks. A service represents an actual application run-
ning on the platform. Thingtegrity distinguishes between
privileged and non-privileged services. Privileged services
have direct access to the system functions and thus com-
prehensive system access. Based on the underlying oper-
ating system, this access may be restricted through an ac-
cess control system. Non-privileged services, however, do
not have direct access to system resources. These services
are initiated by the Thingtegrity runtime. The runtime gen-
erates a sandbox for each service that prohibits direct sys-
tem access. Instead, the runtime provides an
[Communication (IPC)|interface that enables fine grained re-
source access to services. As described further on, this ap-
proach enables privilege measurement and ensures that ser-
vices cannot access resources in an uncontrolled way. To en-
able configuration measurement, the operating system con-
tains the measurement units. The binary measurement unit
is in charge of taking binary measurements of all libraries
and services while the privilege measurement unit generates
privilege measurements of unprivileged services. Similar to
the integrity of the measurement results are ensured
with the help of a[TPM]

Each device has to manage a platform identification key
(pinned to the hardware) that is used to authenticate the hard-
ware platform to other devices. As illustrated in Figurd?] this
key is stored in the [TPM]to protect it from software access.
However, assuming a proper isolation by the operating sys-
tem, the key can also be stored conventionally in the device’s
non-volatile memory.

Moreover, each device manages a list of [Trusted Third]
certificates and property signatures. A [TTP|
property signature is used for property-based attestation and
is a signed tuple of the software module’s name, a hash (bi-
nary measurement) of its executable and the property name.
Currently, Thingtegrity only uses one property, named Trust-
edByThirdParty. This property indicates, that a third party
(e.g., the device vendor or the system administrator) trusts
this binary and it is allowed to execute on the system. Each
device manages the list of [T'TP| certificates that contain the
public part of their keys to verify the property signatures of
other devices.

In contrast to Full Devices, a Constrained Device has a
reduced feature set. They are simple devices like sensors
or actuators that do not require support for highly dynamic
services. Basically, their architecture is similar to Figure[Z}
However, since there is no need for non-privileged services,
they neither contain a Thingtegrity run-time nor a privilege
measurement unit.

3.3 Measurement

In order to implement integrity assurance, the software
components of the prover have to be measured. To achieve
this, Thingtegrity uses binary measurement and privilege
measurement. Here, the measure-before-execute paradigm
is used: Prior to the execution of a new software module,
a measurement of the module is taken and stored. More-
over, this measurement is extended to the [PCR| of the [TPM]
Since a cannot be changed arbitrarily, malicious soft-

Non-privileged Services (Sandboxed)

[%]
S| Privieged
2 Services Communication Commumcanon
8 Policy Policy
Libraries and Privileged Access Functions
Framework \ Thingtegrity Runtime |
‘ File System ‘ Network ‘
£ Operating System Privilege Measurement
§ Unit Measurement
R Binary Measurement Ll
o .
Unit
storage + im ¥y
TPP Certificates Hardware Platform
Property Signatures Identification Key

Figure 2. The components of a Full Device. All devices
securely store a platform identification key that is used
for authentication. Besides normal (privileged) services,
the runtime confines non-privileged services that may or
may not be able to influence each other.

ware is not able to deny its execution. Thingtegrity performs
binary measurement of all services and additional privilege
measurements of non-privileged services.

3.3.1 Binary Measurement

Binary measurements are taken at different tiers. To prove
the integrity of the operating system, the boot process has to
be measured. Therefore, at each boot stage, the next module
loaded is hashed and extended into a[PCR] prior to its execu-
tion. This process is called an authenticated (or trusted) boot.
The very first module is thus never measured (as there is no
former module). Therefore, the first module should be as
small as possible to reduce the attack surface and some mea-
sures should exists that prevent its substitution (e.g., write
protected memory or hardware based solutions [24])). In the
simplest architecture, a small bootloader initiates the [TPM]
measures the operating system kernel and executes it.

After this so called chain of trust is built up, the operat-
ing system is in charge of measuring the remaining modules.
Here, Thingtegrity uses an extended version of [MA] [12].
The modifications are primarily concerned with the measure-
ment entry format required to fit into the global measurement
list. A measurement entry of a binary measurement consists
of the hash of the binary. This module also adds the measure-
ments taken during the boot process (i.e. the measurement of
the operating system) to the measurement list.

3.3.2 Privilege Measurement

The privileges of non-privileged services are measured to
understand what kind of actions the service is able to per-
form. Whenever a non-privileged service is executed, the
Thingtegrity framework generates a sandbox and initiates a
privilege measurement for this module. The generation of
these measurements is done by parsing the external symbols
(i.e., function calls to system libraries) that access system re-
sources from the service’s executable. A found fopen call,
for example, reveals that the service is able to access files on
the system. However, this information is not very useful. A
service that has read access to other service’s files has com-
pletely different privileges compared to a service that only
accesses private files. Since this information is provided by

function parameters that are not static (i.e., they cannot be
parsed from the executable), Thingtegrity provides a finer
grained API to resources. As shown in Table |I|, Thingtegrity
currently provides functions for file and network access. In
Section 5] we show that the chosen granularity provides
enough information to enable privilege-based attestation for
an exemplar system. Moreover, the API is coarse enough to
make it feasible to use; it also allows the migration of legacy
software with little effort.

Table 1. The fine grained API for resource access pro-
vided by the runtime.

Name | Type | Access Method
openPrivate Open service-private file
openGlobal Open other service’s file Read, Write
openSystem Open system-wide files Read, Write
openTemp Open files in temp-system
createSocket Create a network socket Client, Server

The sandbox does not allow direct resource access for
non-privileged modules. Whenever the service has to allo-
cate a resource (like a file or a network socket), an [[PC| call
is performed via the interface. The framework performs the
actual allocation and forwards the resource descriptor to the
service. With this sandbox, we ensure that the service cannot
hide a resource access from the framework. As an example,
the service may try to directly use low-level system calls in
an obfuscated way. The privilege measurement unit may not
be able to decode such calls and the access would not be
measured. However, the sandbox prevents such calls on a
lower layer and all resource accesses have to be made via the
given APL.

3.3.3 Measurement List

The measurement list is the container that a prover uses
to store all its measurements. It is composed of a list of mea-
surement entries. A measurement entry consists of the mod-
ule name, the measurement type and a value. The entry-type
is binary or privilege, depending on the measurement unit
generating the entry. For binary measurements, the mea-
surement value is the hash of the executable representing
the module. A measurement entry of a privilege measure-
ment contains a set of Resource Access Descriptions (RAD).
RADs contain the resource type and additional attributes
based on the type. In the current version, the resource type
can only be one of file or network. A file-RAD contains the
file type (equivalent to the API functions in Table[I)) and the
access type (read/write) as additional properties.

Table 2] illustrates an exemplary measurement list. The
OS and the framework are measured with the binary mea-
surement unit. Two services are running and both are mea-
sured with the binary and the privilege measurement unit.
While CalcService only provides a calculation service on the
network and thus does not need to access the disk, Storage-
Service has access to its private files.

3.4 Integrity Assurance

The described building blocks enable a scalable trusted
computing architecture for heterogeneous devices. If a Full
Device has to prove its integrity to a challenger, various as-
pects have to be considered:

27

28

Table 2. An exemplary measurement list with different
types of measurements.

Name Type Value
Platform OS binary hash=0cedac001ab4
Framework binary hash=b607c8734a%
CalcService binary hash=1223bccdef66
CalcSerivece privilege RAD1={network}
StorageService binary hash=84fedacd2323
StorageService | privilege RADI={network}
RAD2={file,Private,rw}

* A Full Device is a composition of different components
from potentially different vendors. A component may
be the hardware platform, the software platform (OS,
framework) or a service.

* The overall system or the current cluster has an (proba-
bly human) owner or administrator that defines the pol-
icy that describes which devices and services are al-
lowed in the system.

* Since smaller devices may be battery-powered and RF
communication is expensive in terms of energy, the
communication overhead for integrity assurance has to
be minimal.

* A Full Device may integrate a variety of services the
challenger is not interested in. If the challenger has to
know all services the prover could possible execute, the
system may not be feasible due to the high administra-

tive overhead. o))
Thingtegrity combines the principles of binary attestation

and privilege-based attestation to attest the integrity of the
prover’s state and introduces some security properties to re-
duce the overhead for communication and computation.
3.4.1 Attested Components

Table[3)lists the different components and the correspond-
ing integrity assurance method based on the measurement
technologies described above. Although there exists work
about measuring the integrity of hardware in the literature
(e.g., [251]), Thingtegrity does not take into account this as-
pect. However, the hardware is authenticated through the
[PIatform Identification Key (PIK)| The used keys are stored
in a tamper resistant way and the attestation based on a[TPM|
is somewhat secured against hardware attackﬂ A challenger
only communicates if the prover’s public key is known as
trusted. This is ensured with a digital signature during the
initiation of the communication. Therefore, depending on
the key distribution process, it is not possible to add a mali-
cious node to the system.

Platform software consists of two parts. The operating
system and the framework and all services are attested with
an authenticated boot process and [MA] (binary attestation.
For non-privileged services, also a privilege-based attesta-
tion is used.

3.4.2 Integrity Assurance Process

Figure [3] describes the integrity assurance process. The
prover tries to initiate the connection by sending a connec-
tion request, signed with its to the challenger. If the

ITPM] 1.x chips are considered broken for physical access [26]. How-
ever, future revisions or on-chip solutions may reduce this attack surface

Prover

| Signed{Comm. Request, PIK}

Challenger

| Check PIK

'_ Establish Secure Connection

1 Nonce

| Create Certificate (Nonce, Measurement list, PCR)

alt__J I[Configuration of prover changed] T
| Measurement list, Certificate, TPP property signatures._ |
Z

[Prover did not change since last comm.]
| Certificate

| Check Certificate and Comm. Policy
| Actual communication

Challenger

Figure 3. Attestation of a system configuration: After a
secure connection is set up, the prover provides all data
the challenger needs to verify its integrity.

challenger is able to verify the a secure connection is
established. This implies that the challenger has to know
the prover’s prior to the communication. The challenger
provides a nonce to prevent replay-attacks. Together with
the (i.e., the hardware-protected proof of the measure-
ments), the nonce is signed by a key to create the cer-
tificate for the measurement list.

With the measurement list, its certificate and possible
property signatures, the challenger is able to verify the
prover’s integrity. The certificate ensures the integrity of
the measurement list and the verification unit on the chal-
lenger checks whether the measurement list conforms to the
communication policy. Since the measurement list and the
property signatures sometimes imply a high communication
overhead and only change in the relatively rare cases of soft-
ware updates on the prover, the challenger can cache them
and only request a fresh certificate on further communica-
tions.

3.5 Verification

For verification, we use a very similar concept as pro-
posed for privilege-based attestation [17]. In contrast to
usual binary attestation, privilege-based attestation only con-
siders the service which is used by the challenger and its
dependencies. For all other services, it is ensured that they
are not able to manipulate the integrity of the targeted ser-
vice(s). This is accomplished by executing the rules de-
fined in the communication policy and comparing the ref-
erence measurements to the prover’s measurement list based
on these rules.

3.5.1 Communication Policy

The communication policy proposed for privilege-based
attestation is very complex since it offers a very high flexi-
bility that enables comprehensive information flow analysis
for all services. Since this is a task that may be to heavy-
weight for constrained devices, Thingtegrity currently uses a
very simple policy which is forced for all modules. The pol-
icy simply states that no other service is allowed to access a
service’s (or one of its dependencies) private files in read or
write mode. Although this policy limits the flexibility of the
system, it is a good representation of the generic 'no other

Table 3. The measured components and the corresponding integrity assurance method.

Component |

Assurance Method |

Technology

Hardware

Framework
Privileged Services
Non-Privileged Services

service is able to influence the service’s integrity’ policy and
feasible enough to show the functionality of the prototype.

3.5.2 Verification Unit

The reduced communication policy enables a very
lightweight verification unit. All modules from the prover’s
measurement list are separated into a privileged and a non-
privileged list. The privileged list contains the following
entries:

* Modules where no privilege measurement exists (OS,
framework, system libraries, privileged services).

* The remote service that is targeted by the challenger
(communication partner). This information is either
provided by the challenger’s endpoint service (as in our
implementation) or by the prover’s Thingtegrity frame-
work.

* All dependencies of the communication partner. This
information is provided by the prover’s Thingtegrity
framework since the challenger may not be aware of

these relations.
All non-privileged services are checked as to whether they

comply with the communication policy. If a service vio-
lates the policy, it is added to the privileged list. It is thus
considered as dependency (from the security point of view)
and verified by binary attestation. For all privileged services,
the binary measurement must either be in the local reference
measurement list or certified by a property signature
(i.e., the prover provided the signature and the correspond-
ing [TTP|certificate is in the local list).

4 IoTivity Integration

We integrated the architecture described above into IoTiv-
ity, a framework for applications. For the current ver-
sion, we targeted Full Devices with Linux on ARM and x86
platforms. However, we are working on integrating support
for Constrained Devices on platforms like Arduino.

IoTivity is a resource-based, RESTful framework that
provides device and resource management, as well as a uni-
fied communication stack for [[0T} It defines devices, re-
sources and operations. A device provides resources to the
outer world. A resource is a component that can be viewed
or controlled by another device. An example of a resource
may be a temperature sensor or a light controller. Moreover,
IoTivity offers resource topologies and virtual resources. Via
a RESTful API, IoTivity supports different operations (e.g.,
GET and PUT) on these resources. Based on these compo-
nents, loTivity provides functionality to register a resource,
find a resource in the network and to perform operations on
remote resources. For secure connections, we use IoTivity
with DTLS based on [Elliptic Curve Cryptography (ECC)| To
reduce the overhead, these authentication keys are currently
used as the

Authentication (Platform Identity Key)
oS Binary Attestation
Binary Attestation
Binary Attestation
Binary Attestation, Privilege-Based Attestation

Digital Signature
Authenticated Boot
IMA
IMA
IMA/Privilege Measurement

4.1 Thingtegrity Runtime

As mentioned before, Thingtegrity consists of the run-
time that sandboxes non-privileged services, the measure-
ment units and the remote attestation process on top of a
secure channel. In our implementation, we use many com-
ponents that are already implemented in Linux and IoTivity
to keep the overhead minimal.

4.1.1 Sandboxing and Resource Interface

The Thingtegrity runtime is the central point that manages
all non-privileged services. It is in charge of their execution,
sandboxing and resource access and achieves this with the
following parts:

* A service that allows deployment or update of other ser-
vices on the system to authorized users.

* A chroot jail for all non-privileged services.

¢ One local socket for each service to enable communi-
cation with the runtime.

* An interface that provides access to the system re-

sources via the runtime and replaces libc’s functions.

The deployment of a new service or the update of an exist-
ing service is done via the Thingtegrity deployment service.
This is a privileged service that adds (or removes) services
to the runtime. Currently, this is authenticated with a simple
password-check. Thingtegrity generates a directory structure
for each service. This sandbox contains the executable, the
libraries used by the service and the local socket file. Prior
to the execution, the runtime chroots into the directory to
prevent the service from accessing the file system directly.
Generally, chroot jails are not a security feature and fail if
the guest applications gain root access in their confined en-
vironment. However, in combination with Grsecurity that
mitigates many of chroot’s security problems, this type of
sandboxing is suitable for our prototype since we execute
the services with a very restricted user. Another advantage
of this approach is that the runtime has control over the li-
braries used by the service. Currently we only provide Io-
Tivity, the Thingtegrity interface and their dependencies. To
simplify the development of new services, we also added a
modified version of Qt, which uses the Thingtegrity interface
for file access. While such libraries may not be feasible on
a Constrained Device, a Full Device should normally have
enough resources to allow their usage.

Analogous to the sandboxes, a private file directory for
each service is generated to store their private data. In or-
der to access a file outside the chroot jail, an application
uses the Thingtegrity interface that provides resource allo-
cation functions similar to the interface introduced in Table
[[] with dedicated functions for the read and write variations.
The framework checks whether the function call is valid (i.e.,

29

30

this type of resource access was measured before for this ser-
vice), opens the file and passes it back to the service.

4.1.2 Integrity Measurement

Currently, Thingtegrity uses Linux’s[[MA]implementation
as the binary measurement unit. It is configured to measure
all files that are executed. Privilege measurement is done
by the Thingtegrity framework in user-space. The runtime
extends GNU nm to read the external symbols of the exe-
cutables. These symbols are mapped to resource access de-
scriptors and added as privilege measurements to a dedicated
privilege measurement list. Both measurement lists use a dif-
ferent @ However, when a challenger requests the lists,
they are merged into a combined structure.

4.2 IoTivity Extensions

IoTivity differentiates between secure and non-secure re-
sources. Based on this property, a secure connection is used.
We added a property, called RequiresAttest, that indicates,
that a resource also needs a trusted client to enable commu-
nication. Since our attestation method relies on a secure con-
nection, this property implies the secure resource property.

Whenever a device wants to enumerate loTivity resources
in the network, it multicasts a request to all other devices that
are providing resources (server). Each server responds with
a list of all its resources and their properties. If attestation is
required for one of the listed resources, the server also adds
a nonce as a header option to the response. Based on these
properties, the client decides whether it has to attest its in-
tegrity to access a resource. In this case, the client adds a
header option to the GET or PUT request, and adds the at-
testation information to the payload. As mentioned before,
this information is either the complete measurement list, the
certificate and the property signatures, or the certificate only
(in case the server already has a cached copy of the current
measurement list). We extended IoTivity to extract this in-
formation from the payload and forward it to the runtime that
checks the response. Therefore, this process is transparent to
the actual service running on top of the framework.

5 Use Case

In order to evaluate the trusted computing architecture,
we generated a set of IoTivity services that simulate an ex-
emplary home automation use-case where products of dif-
ferent vendors are used in one system that is controlled by
its owner. Although this use-case is relatively simple, it rep-
resents all basic mechanisms and since Thingtegrity is non-
intrusive and transparent to the actual system, the results in
other environments such as an industrial automation system
or a cluster of a bigger network would be similar. Figure[d]il-
lustrates the evaluated system. The Control Center (CC) is a
Full Device running on an ARM single board computer and
hosts a number of services. We also simulated a set of Con-
strained Devices, each in a virtual machine running on an
off-the-shelf PC. The Constrained Devices represent simple
sensors or actuators. Since we are not interested in func-
tionality here, they either provide or consume some random
values. We assume that the devices and services are from
different vendors. Therefore, they don’t know or trust each
other when the system is set up. However, some of them
provide a known API so other services are able to request

their data. In this evaluation, we assume that corresponding
services and devices (i.e., temperature control and temper-
ature sensors) are from the same vendor. Moreover, a user
(the owner) exists, who is interested in retaining control of
the overall system. The services running on the CC provide
the following functionality:

Deployment: This service is used to deploy all other ser-
vices on the CC. As described in the previous section, this is
a privileged service and part of the framework. The CC and
the framework is delivered by Vendor1(V1)

Bootstrap: This service is also part of the framework and
used to bootstrap the trusted relations between the CC and
the Constrained Devices.

Backup: In this scenario, the system owner created a
backup service that collects and stores private data from all
other services. Therefore, this service has global file access.

TemperatureControl: This service periodically reads
data from different temperature sensors and writes values
to actuators. The service and devices are delivered by
Vendor2(V?2).

AccessControl: This service represents an access control
system to an apartment or house. An authenticated Con-
strained Device (e.g., a smartphone) is able to control the
actuator (e.g., the door lock). Moreover, the service main-
tains a ‘presence’ state of the owner. The user is able to in-
form the service about its absence. This information can be
requested by other authenticated services. The service and
devices are delivered by Vendor3(V3).

LightControl: This service represents a light control
service that allows authenticated devices (like switches or
smartphones) to control the state of light bulbs. Moreover,
this service requests the ‘presence’ state from the Access-
Control service and sporadically switches lights on or off in
case the absence lasts longer than a defined time interval 7.
The service and devices are delivered by Vendor4(V4).

Smart

o] | Door Aircon | [Light1 | [Light2 || Phone
Temperature Control PK o A PRy
Sensor PK,, PK PK PK PK

PK y v y v
R PK, PK,, PIK| | PK, PIK.| | PK, PIK, PK,
. PK,, PIK, PK,, PIKee

PK,, PIK =

Central Device

Services Property Signatures Known PIKs
Deployment OS, Framwork (PK,,) PIK,
Bootstrap Deployment (PK,,) PIK,
Backup Bootstrap (PK,,) PIK
TemperatureControl e N
AccessControl Backup (PK,) PIK,

TemperatureControl (PK,)
AccessControl (PK,, PK)
LightControl (PK,,,)

LightControl

Figure 4. The exemplary system for investigation of the
implemented architecture. The Control Center (CC) car-
ries different applications from different vendors that
communicate with different types of constrained devices.

The implementation of the services revealed by the priv-
ileges and dependencies are shown in Table [d] All services,
except Backup only access private data. Moreover, Light-
Control depends on the integrity of AccessControl, because
this service is indirectly able to manipulate the actuators’

Table 4. Control Center (CC) services with their file priv-
ileges (Private, Global, Read, Write) and dependencies.

| Name | Priv. | Dependency
1 Deployment -
2 Bootstrap Service -
3 Backup G(R)
4 | TemperatureControl | P(RW)
5 AccessControl P(RW)
6 LightControl P(RW) 5

states.

5.1 Bootstrapping Trust

In order to set up the system, all devices have to be con-
figured with some basic information like the [PIK|or[TTP]sig-
natures. To create a feasible trust-architecture, this process
should be as lean as possible. In our scenario, we have some
basic assumptions:

» Every device is provisioned with a in the manufac-
turing process.

e Each vendor defines itself as [TTPl Each device there-
fore has the public key of its vendor in its [TTP]list.

* A vendor that releases a service as a binary, also pro-
vides the corresponding signature of the TrustedThird-
Party property. This is also true for the platform vendor,
who signs the OS and framework measurements and de-
ploys these signatures with the CC. In the current imple-
mentation, only a plain signature of the binary’s hash is
generated since there are no other properties.

e The user trusts the vendor of the CC-platform, since this

device is always able to access the user’s data.
A exists for each device (PIKcc,PIK;...PIKy) and a

property signature key for each vendor (PKy,...PKj) as well
as for the user (PKy). Each of these keys consist of a public
and a private part.

Based on these assumptions, the user is able to create the
trusted relationships between all its devices with few steps:

* Get ownership of one device (CC) and set it up (install
software).

* If there are dependencies, configure them.

¢ For each other device: Add it to the network (which

~eventually needs a manual confirmation).
First, the Bootstrap service is used to set the user as the de-

vice owner by loading the public part of the user’s PKy to
the CC. This action is only possible once and secured by
a one-time password (e.g., printed on the device). Subse-
quently, the user deploys all devices and property signatures
via the deployment service. Moreover, the user configures
the LightControl service to use the AccessControl’s presence
feature. PKy is used to sign a TrustedByThirdParty property
for the AccessControl service. This indicates that this service
is trusted in the user’s system. This signature is stored to CC
with the Deployment service.

Whenever a Constrained Device joins the network, it tries
to locate a Bootstrap service. If the communication suc-
ceeds, the service automatically deploys the property sig-
nature keys of the user and CC’s platform vendor to the
Constrained Device. Currently we use the trust on first

sight paradigm. A sensor or actuator device therefore only
trusts the first bootstrap service it is able to find. How-
ever, we could also use other mechanisms like the one-time
password or|Password Authenticated Key Exchange (PAKE)|
(e.g., [27]), if the Constrained Device is a more complex
device and has some kind of key pad). Another possibil-
ity would be one-time passwords that are printed onto the
device. In order to allow the device to access the network,
an authenticated user has to confirm its membership via the
Bootstrap service. Technically this adds the device’s PIK to
the CC’s known and trusted PIK list.

In our test system, the smartphone is modeled as a Con-
strained Device that executes two services (for communica-
tion with the AccessControl and the LightService) on the CC.
Therefore, the property signature keys of both vendors are
known by this device. In a real-world scenario the smart-
phone should be modeled as Full Device with another vendor
that is trusted by the CC.

5.2 Integrity Assurance

After the initial configuration, devices which have to com-
municate are able to attest their integrity to each other. All
devices are authenticated with their PIK. A sensor or actua-
tor node is able to check the integrity of the CC by verifying
the property signatures of CC’s OS and framework against
PKy1. Moreover, these devices are able to verify the integrity
of its corresponding service or its dependencies by using its
vendor’s or the owner’s signature key.

Although the test system currently does not perform this
task, the CC would be able to check the integrity of the
other devices by verifying the property signature of their bi-
nary measurements. Since Constrained Devices do not con-
tain the full framework, they only provide binary attestation.
Moreover, all Constrained Devices that have to communicate
with each other (e.g., the light actuators Light! and Light2)
are able to attest their integrity to each other, because they
share the same vendor key. The current implementation,
however, relies on a[TPM] what is not feasible for tiny de-
vices. Therefore, more lightweight approaches (e.g., [20],
[21]], [22]) have to be included in the framework in order to
enable mutual attestation in the future, as discussed in Sec-
tion2l

Whenever a vendor updates one of its services, the owner
just has to deploy the update over the deployment service (or
allow the vendor to push updates). The new property signa-
ture is automatically propagated to all devices and nothing
has to be reconfigured. If no property signatures are used
and the other devices manage reference measurements, the
new reference only has to be pushed to devices that actually
used the new service.

6 Evaluation

In order to build a feasible trusted computing middleware
for[[oT] the system has to provide an attestation mechanism
that targets common threats in this domain without adding
too much overhead in terms of administration, communica-
tion and computing to ensure scalability. With the help of
the exemplar system described above, we are able to analyze
the proposed system regarding common attacks as well as
the additional complexity.

31

32

6.1 Security Evaluation

We analyze different methods of potential malicious mod-
ifications of the overall system and how they are detected.
Moreover, we analyze the communication protocol and the
current set of attested properties for future directions.

6.1.1 Attacker Model

Given that the sensed information or actuated environ-
ment of the device owner should be protected, this stake-
holder is considered trusted in this evaluation. Since the de-
vices may be exposed in a publicy accessible environemt, an
adversary may have limited physical access to existing hard-
ware (e.g., J-TAG access). Therefore, she has the possibility
to modify the software configuration. Additionally, an ad-
versary is able to modify existing hardware and may try to
add new devices to the system. However, the adversary is
not able to read or modify information, that is protected by
additional hardware measures (e.g., the PIK).

6.1.2 System Modifications

Table[5|shows potential attacks on the system and whether
Thingtegrity is able to detect the attack or mitigate the threat
and what type of attacks have to be countered with other
technologies. Basically, the system can be modified by ma-
nipulation of an existing or insertion of a new hardware or
software module.

Hardware Manipulation: Adversaries with physical ac-
cess to the system may modify existing hardware. They
might be able to forge sensor values or directly read/write
unprotected electrical signals. Other devices would not be
aware of this security breach because the altered device
would authenticate with its PIK and the software is not mod-
ified. However, this type of attack usually demands on in-
deep system knowledge and high effort. If potential moti-
vated (in terms of revenue) attackers have physical access to
the devices and their direct environment, other measures like
physical protection or plausibility checks of signals have to
be in place.

Static Software Manipulation of a Privileged Service;
Here, the term static manipulation means that the binary of
a module is changed statically (i.e., persistent). A modified
privileged service or a modification of other system compo-
nents would cause another binary measurement that is not
known or issued by any other entity. This measurement
would violate the communication policy of other devices and
therefore they would refuse to communicate. Adversaries are
thus isolated and cannot access the network. However, they
may be able to perform [Denial of Service (DoS)|or jamming
attacks on the physical layer to reduce availability of other
services.

Static Software Manipulation of a Non-Privileged Ser-
vice: If a non-privileged module is altered in a way that
changes its properties (privileges), these changes are re-
flected in the privilege measurement. Therefore, this case
is comparable to manipulation of a privileged service. If
the non-privileged service is changed without escalating the
properties, the integrity of other modules is not harmed in
case of a proper communication policy. Here, this means
that the module is still not able to access another modules
files. As discussed later, this policy may not be sufficient

for all possible systems and security properties (e.g., avail-
ability). A device that is directly communicating with this
(maliciously modified) service considers it as privileged ser-
vice, and therefore is able to detect the manipulation. Again,
an adversary is not able to maliciously modify the system
without detection.

Dynamic Software Manipulation of a Privileged Service:
Additionally to static manipulation, we have to consider run-
time code modifications. Examples may be buffer over-
flow attacks or[Return Oriented Programming (RoP)]attacks.
Since the binary measurement is taken prior to the execution,
these modifications are not reflected in the measurement list
and cannot be detected. Therefore, other mitigation tech-
niques like a shadow stack (for example [28]]), have to be
used against this type of attacks.

Dynamic Software Manipulation of a Non-Privileged Ser-
vice: In contrast to privileged services, a sandbox is gener-
ated based on the identified privilege measurement of the ser-
vice. Therefore, similar to static manipulation, the service is
at least not able to harm other service’s integrity. However,
it may perform malicious actions that comply with the ser-
vices” sandbox. Therefore, the principle of least privilege
should be enforced during service development.

Insertion of Hardware/Devices: Assuming that an adver-
sary has no access to valid PIKs, additional devices are ig-
nored by the system. However, again [DoS| or jamming at-
tacks have to be considered.

Insertion of new Software Modules: Technically, the in-
sertion of new software modules is the the same as statically
changing a module. Therefore, the same considerations ap-
ply here.

6.1.3 Communication Protocol

The underlying secure communication protocol prevents
message modifications on the channel. Moreover, the cur-
rent PSK scheme pins a PIK to a device and therefore pre-
vents man-in-the-middle attacks. As described above, it is
not possible to (maliciously) add new devices into the sys-
tem. This is an additional counter-measurement against this
type of attacks. Moreover, the protocol is resistant against
replay-attacks because of the used nonce. Therefore, the pro-
tection of the PIK, the key-exchange, as well as the quality
of the random nonce should get special attention when im-
plementing the system.

6.1.4 Measured Properties

Currently, we only measure binaries and privileges of
services. As mentioned before, these properties may not
be enough for security requirements of many real systems.
Binary attestation does not protect against dynamic code
changes and the overall measurements do not protect against
a variety of attacks: For example a malicious service would
be able to consume a high percentage of a hardware resource
to prevent other services on the same device from working
properly. Another possible class of attacks may be side-
channel attacks. In future work, we will use the exemplary
system described above to examine possible other properties.

6.2 Overhead

To evaluate the overhead of Thingtegrity in terms of com-
munication, computation and memory, we compared the full

Table 5. Overview of possible attack types regarding system modifications.

Name | Description | Mitigation
Manipulation
Hardware Modification of the hardware of a device X
Privileged (static) Static modification of a privileged software module v
Non-Privileged (static) Static modification of a non-privileged software module v
Privileged (dynamic) Runtime modification of a privileged software module X
Non-Privileged (dynamic) | Runtime modification of a non-privileged software module)
Insertion
Hardware Insertion of a new device v
Privileged Insertion of a privileged software module v
Non-Privileged Insertion of a non-privileged software module v

implementation with binary-attestation only (IMA). Figure[3]
shows the results for our exemplar system. We used property
signatures for binary measurements in both cases to make the
results more comparable. The use of plain reference mea-
surements would lead to comparable results, because anal-
ogous to the [TTP| keys, each device would have to manage
keys to verify updates of the reference measurements. The
actual memory and time complexity of the overhead highly
depends on the used cryptograhic schemes (e.g., key size and
signature verification complexity).

As shown in Figure [5a] the information stored on the
constrained devices is singificantly smaller if Thingtegrity is
used. Only [TTP|certificates for privileged services, the target
service and its dependencies have to be in stored. Moreover,
less stored keys are also reflected in a simpler bootstrap-
process (less keys have to be provisioned), as well as in better
scalability (if a new unprivileged service or device is added
to the system, existing devices do not need an additional[TTP|
certificate, as shown in Figure[5b). Moreover, a high number
of certificates increases the chance of one leaked private
key that is considered trusted by the whole system.

However, this architecture increases the size of the mea-
surement list and adds overhead from the additional privi-
lege measurements, their verification and the sandbox. The
extended measurement list with privilege measurements and
dependencies increases the number of bytes that have to be
transmitted on the network interface. Since many of the
targeted applications are battery-powered with wireless net-
work interfaces, this is a critical part. Therefore, we com-
pared the sizes of the measurement lists for our test system
with and without privilege measurements and dependencies.
While the size of the binary measurement list is 429B, the
full list requires 5068, an increase of 18.8%. Compared to
the gain of information, the increase is relatively small. The
measurement list also only contains four non-service entries,
because we were able to merge some binary measurements
for different libraries contained within the framework. More-
over, this overhead vanishes after the first communication
because the measurement list is cached by the challenger.
Additionally, it has to be stated that we do not send more
packages than without attestation, since we integrate all in-
formation into the existing communication.

The process of measuring the privileges of software mod-
ules does not significantly affect performance. Since we only
parse the headers of the executables, the time used for mea-
surement is similar to hashing to whole binary [[17].

Regarding the fine grained resource access API, two as-
pects have to be considered. First the calls have an

impact on performance. However, since resource access
calls are normally relatively slow anyway, our measurements
showed that the time overhead for fopen is only about 0.1ms
(Off-the-shelf PC with SSD, cleared file system caches).
Moreover, after the first access (i.e., the file is opened), the
normal system API (like read or write) can be used. Al-
though the fine-grained API is unfamiliar and we have not
yet done usability studies, we believe the impact on service
development is not significant. For the test system, we added
wrapper functions for libc, as well as for the Qt framework
(with different versions of QFile). Based on these library
extensions and static analysis, we were also able to update
legacy software to the new API relatively simply.

Similar results could be achieved by directly using sand-
box policies or model carrying code instead of measuring
the executables before their execution. Some of these meth-
ods are described in the related work. However, with the
measure-approach, neither the module developer nor the sys-
tem administrator has to generate these policies. Moreover,
the system itself is able to decide what type of privileged
functions are relevant. Therefore, updates of the communi-
cation policy model do not require an updated service.

7 Conclusion and Future Work

In this work Thingtegrity, a trusted computing architec-
ture for systems with many devices that are constrained in
terms of energy, connectivity and performance has been pre-
sented. We combined concepts from binary-, property- and
privilege- remote attestation and integrated it into IoTivity.
The architecture is transparent and hides the complexity of
remote attestation from the overlying application. Addition-
ally, we provide a testbed that enables the investigation of
further attestable properties for future devices and systems.

As a first step, we implemented the system for the attesta-
tion of software configurations on Full Devices. We showed
that the architecture enables a simplified bootstrapping of
trusted environments. Compared to traditional remote at-
testation systems, the maintainability and scalability of the
trusted relations is improved. This is achieved by reducing
the complexity of configuration measurements. This reduces
the memory and communication overhead significantly for
systems with a high number of services or devices.

The next step is the integration of attestation of Con-
strained Devices. In order to enable support for real-world
tiny devices, more investigation with regards to security ar-
chitectures at device level, as well as the reduction of asym-
metric cryptography has to be conducted. We thus have

to provide support for other, non IRTRE for hardware-

33

34

Memory Overhead for TPP Certificates per Device
T T

Measurement List (Binary + Privilege Measurements)

35 I Binary-Based with Property-Signature

I Thingtegrity

Overhead [kB]

Temp. Sensor

Door Control AirCon Light1 Light2
Device

(@)

. for the Temperature Sensor
B —@©— Binary-Based with Property-Signature
_ —¥%— Thingtegrity o]
Tist]
k2]
)
g 1y
(5}
=
k]
o 05
N
(2]
0
Smartphone 1 2 3 4 5 6 7 8 9 10

Non-Privileged Service Count on the Central Device

(b)

Figure 5. The additional memory used to store TPP public keys (5a) per device, as well as the size of the measurement

list that has to be verified on the temperature sensor (5b).

based signatures.

Based on the test system, it would be desirable to build
more use-cases for different domains to explore the usability
of the current resource access API. Moreover, support for
other resource types such as sensors has to be added. The
current sandboxing solution should also be replaced with a
less intrusive method. Especially, regarding ports to other
environments, this part should be interchangeable.

Based on future investigations, the communication poli-
cies should be refined. Currently only access to files of other
services is considered. However, also other resources and
[[PC] mechanisms have to be examined. Moreover, informa-
tion flows are not the only threat to a service’s integrity. A
malicious module without any permissions may consume a
lot of CPU or storage to prevent other modules from working
correctly. Therefore, further properties should be introduced
to prove attributes like computing capacity.

In summary, we showed that remote attestation is in fact
feasible for[[oT]architectures and with the spread of common
standards systems that are comprised of a high number of
modules from different vendors are also capable of proving
their integrity.

8 Acknowledgements
Thanks to Matthias Kovatsch for improving this paper by
giving helpful comments during the shepherding process.

9 References

[1] Gartner Inc., “Analysts to Explore the Disruptive Impact of IoT on
Business,” in Gartner Symposium/ITxpo, 2014.

[2] BBC, “Not in front of the telly: Warning over ’listening’ TV,” 2015.
[Online]. Available: http://bbc.com/news/technology-31296188

[3] A. Chapman, “Hacking into Internet Connected Light Bulbs,”
2014. [Online]. Available: http://www.contextis.com/resources/blog/
hacking-internet-connected- light-bulbs/

[4] D. Halperin, S. S. Clark, and K. Fu, “Pacemakers and implantable car-
diac defibrillators: Software radio attacks and zero-power defenses,”
Proceedings - IEEE Symposium on Security and Privacy, 2008.

[5] B. Miller and D. Rowe, “A survey SCADA of and critical infras-
tructure incidents,” Annual Conference on Research in Information
Technology, p. 51, 2012.

[6] Trusted Computing Group, “TPM Main Specificication Level 2 Ver-
sion 1.2,” 2006.

[71 S. W. Smith, “Outbound authentication for programmable secure
coprocessors,” International Journal of Information Security, vol. 3,
no. 1, pp. 28—41, May 2004.

[8] M. Nauman, S. Khan, X. Zhang, and J. Seifert, “Beyond kernel-level
integrity measurement: enabling remote attestation for the android
platform,” Trust and Trustworthy Computing, pp. 1-15, 2010.

[9] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A
minimalist approach to Remote Attestation,” Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-6,
2014.

[10] R. Akram, K. Markantonakis, and K. Mayes, “Remote Attestation
Mechanism based on Physical Unclonable Functions,” Workshop on
RFID and IoT Security, 2013.

[11] M. LeMay and C. a. Gunter, “Cumulative Attestation Kernels for
Embedded Systems,” IEEE Transactions on Smart Grid, vol. 3, no. 2,
pp. 744-760, Jun. 2012.

[12] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and im-
plementation of a TCG-based integrity measurement architecture,” in
USENIX Security Symposium, 2004.

[13] A. Sadeghi and C. Stiible, “Property-based attestation for computing
platforms: caring about properties, not mechanisms,” Proceedings of
the 2004 workshop on New Security Paradigms, pp. 67-77, 2004.

[14] M. Ceccato, Y. Ofek, and P. Tonella, “A Protocol for Property-Based
Attestation,” Theory and Practice of Computer Science, p. 7, 2008.

[15] T. Jaeger, R. Sailer, and U. Shankar, “Policy-Reduced Integrity
Measurement Architecture,” in Symposium on Access Control Models
and Technologies, 2006.

[16] W. Xu, X. Zhang, and H. Hu, “Remote attestation with domain-
based integrity model and policy analysis,” Dependable and Secure
Computing, vol. 9, no. 3, pp. 429442, 2012.

[17] T. Rauter, A. Holler, N. Kajtazovic, and C. Kreiner, “Privilege-Based
Remote Attestation: Towards Integrity Assurance for Lightweight
Clients,” in Workshop on IoT Privacy, Trust, and Security, 2015.

[18] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, pp. 18-24, 2004.

[19] James Greene, “Intel Trusted Execution Technology,” Intel Whitepa-
per, 2003.

[20] D. Perito, G. Tsudik, and K. E. Defrawy, “SMART : Secure and
Minimal Architecture for (Establishing a Dynamic) Root of Trust,”
Security, 2012.

[21] P. Koeberl, S. Schulz, A.-r. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in Proceedings
of the Ninth European Conference on Computer Systems, 2014.

[22] F. Brasser, B. E. Mahjoub, A.-r. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny Trust Anchor for Tiny Devices,” in Design, Au-
tomation & Test in Europe Conference & Exhibition, 2015.

[23] L. Chen, H. Lohr, M. Manulis, and A. Sadeghi, “Property-based
attestation without a trusted third party,” Information Security, 2008.

[24] J. Li, H. Zhang, and B. Zhao, “Research of reliable trusted boot in
embedded systems,” in Computer Science/Network Technology, 2011.

[25] C. Yu and M. T. Yuan, “Integrity measurement of hardware based on
TPM,” International Conference on Computer Science and Informa-
tion Technology, vol. 3, pp. 507-510, 2010.

[26] E.R. Sparks, “A Security Assessment of Trusted Platform Modules,”
Tech. Rep., 2007.

[27] F. Hao and P. Y. a. Ryan, “Password authenticated key exchange by
juggling,” Lecture Notes in Computer Science, 2008.

[28] L. Davi, A. Sadeghi, and M. Winandy, “ROPdefender: A
detection tool to defend against return-oriented programming
attacks,” ASIACCS, pp. 1-22,2011.

http://bbc.com/news/technology-31296188
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/

	Introduction
	Background and Related Work
	Remote Attestation
	Configuration Measurement and Verification

	System Architecture
	Overview
	Remote Attestation
	Configuration Measurement and Verification

	Framework Architecture
	Measurement
	Binary Measurement
	Privilege Measurement
	Measurement List

	Integrity Assurance
	Attested Components
	Integrity Assurance Process

	Verification
	Communication Policy
	Verification Unit

	IoTivity Integration
	Thingtegrity Runtime
	Sandboxing and Resource Interface
	Integrity Measurement

	IoTivity Extensions

	Use Case
	Bootstrapping Trust
	Integrity Assurance

	Evaluation
	Security Evaluation
	Attacker Model
	System Modifications
	Communication Protocol
	Measured Properties

	Overhead

	Conclusion and Future Work
	Acknowledgements
	References

