DejaVu: Visual Diffing of Cyber-Physical Systems

Fergus Leahy
Department of Computing, Imperial College London,
London, UK

fergus.leahy@imperial.ac.uk

Abstract

In this paper we present DejaVu, a novel 3D virtual world
co-simulator for ‘visual diffing’ of cyber-physical system
deployments in indoor and outdoor environments. Using
faster-than-real-time simulation and efficient recording De-
jaVu can record days of simulation data, including environ-
mental, sensor and network data for later replay and analy-
sis. DejaVu enables developers to replay and visually com-
pare multiple simulations simultaneously using different vi-
sual diffing techniques, including ghosts, paths, colour and
size, highlighting differences between runs, including energy
consumption, radio metrics, movement, etc. We demon-
strate several of these visual diffing techniques in an CPS-
enhanced evacuation case study.

Categories and Subject Descriptors
1.6.7 [Simulation and Modeling]: Simulation Support
Systems — Environments

General Terms
Design, Experimentation, Performance

Keywords
Cyber-Physical Systems, Visual Diffing, Environment

1 Introduction

Cyber-physical systems and IoT devices are becoming
increasingly integrated into buildings around us, providing
building climate-control, fire detection, security, lighting and
numerous other services for homes and offices. Building and
integrating these systems quickly becomes complex, with
many different types of devices, vendor’s ecosystems and
protocols to deal with [5]. Real-world end-to-end testing of
such systems, to ensure correctness, robustness and energy-
sustainability, is time-consuming, expensive and often im-
practical or inconvenient, e.g., requiring repeated access to
office space to set-up, test and move networks of nodes.

International Conference on Embedded Wireless

Systems and Networks (EWSN) 2018

14—16 February, Madrid, Spain

© 2018 Copyright is held by the authors.

Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1

Naranker Dulay
Department of Computing, Imperial College London,
London, UK

n.dulay@imperial.ac.uk

Simulation tools provide part of the solution to these is-
sues, enabling software testing on virtualised target devices,
whilst remaining accurate enough for a successful deploy-
ment in the real-world. However, traditional test-beds and
simulation tools have limited facilities for simulating the en-
vironment, post-simulation analysis and data-processing. A
typical simulation utilises scripted inputs or traces to pro-
vide input to running tests, recording all outputs and events
to log files. Developers can observe simulated behaviour vi-
sually (through network maps, timelines and visual sensor
feedback, such as LEDs) whilst it is running. After which,
the recorded data can be viewed and compared to other runs
textually, or through ad-hoc processing into visual graphs
and plots etc. Although simulation runs can be recorded
into video, this only provides a single fixed viewpoint to ob-
serve the simulation from. Thus, the tools and techniques
for supporting developers to test and analyse cyber-physical
systems intuitively in simulation remains limited.

In this paper we:

e Present the concept of visual diffing of CPS simulations
and explain how our CPS simulator, DejaVu, imple-
ments several visual diffing features (section 3).

e Demonstrate the use of visual diffing in the setting of
a CPS-assisted fire evacuation scenario, utilising sev-
eral visual diffing features of DejaVu to highlight differ-
ences and points of interest between multiple simulated
runs (section 4).

Show that visual diffing using DejaVu is efficient and
able to run on a modern desktop machine, simultane-
ously recording, viewing and visual diffing hours of
simulation data (section 3.5.2 and 5).

2 Related Work

Compared with the current WSN and CPS simulators
[15, 12, 7], including Cooja and Tossim, which provide
only manual sensor input or fixed traces, DejaVu adds a full
physics-based 3D debugging environment and support for vi-
sualisation of human mobility traces.

As modern desktops and graphics card become more
powerful and capable of supporting complex and dynamic
3D worlds, research has taken to utilising 3D game engines
and frameworks for environmental and CPS simulation: Kim
et al.[9] utilise an SMT solver with the Unity 3D game en-
gine to generate and visualise virtual roads for large-scale au-

158

tonomous car testing; Ardan [11] is a 3D CPS co-simulation
framework for distributed CPS testing, utilising deployable
application code, phenomena-on-demand and crowds, to cre-
ate controllable, dynamic and life-like environments; 3D
simulation has also been used for design and testing of visual
algorithms for robotic interaction, traversal and navigation of
virtual environments [1, 10, 3].

Tools such as Gazebo [1], Ardan [11] and others [14, 10,
3], provide 3D environment simulation, but don’t consider
the difficult task of analysing these 3D simulations, relying
on users to attempt observing everything at once, as if look-
ing for a needle in a haystack, or requiring them to later re-
view and manipulate logs of non-visual meta-data without
the visual and environmental context. Utilising visual diff-
ing, DejaVu enables visual analysis of visual and non-visual
data in real-time within a live simulation; coupled with full
simulation replays, it allows for developers to perform more
complete analysis across an entire environment from within
the simulator.

Testbeds provide an alternative to simulation, mixing
the real-world hardware with a semi-realistic environment.
Chatzigiannakis et al. focus on overcoming the difficulties in
building and managing large and varied testbeds, by creating
federated test-beds across many institutions [4]. Dhoutaut
et al. utilise sensor memory checkpointing to enable repeat-
able and replayable testing by saving and resuming a sensors
state using a wired backbone [13]. Whilst these approaches
maintain the hardware accuracy and improve upon testing
efficiency, they are typically deployed in lab environments,
thus, don’t provide realistic environmental context. In con-
trast, Kartakis et al. built Waterbox [8], a table-top-scale ver-
sion water network to test water network based CPS deploy-
ments, providing realistic context and control of real valves
and water flow.

3 Visual Diffing of Cyber Physical Systems

Inspired by its use in other domains, such as live sports
and video games, visual diffing enables viewers to see the
differences between two or more instances of an event visu-
ally incorporated directly into the visual medium itself, in-
stead of just presenting a simple data metric alongside, such
as time. A common technique is visual ghosting!, e.g., two
individual skiers racing, visually overlaid as ghosts onto the
same race track, provides a visually appealing and intuitive
experience as the race progresses. Similarly in DejaVu, in-
stead of viewing simulations in isolation (1a), developers can
visual diff two simulations using ghosts, as shown in figure
1b, to show how differently crowds of people move.

In the rest of this section we introduce DejaVu and explain
in more detail the high-level visual diffing features which
make DejaVu unique from the current state-of-the-art sim-
ulators, before describing the design and implementation of
these features.

The name ghosts comes from the ability of entities to pass through ob-
jects and each-other unaffected, not necessarily their ghastly colour, which
is added to aid in disambiguation.

3.1 DejaVu - A Visual Diffing, 3D Virtual
World CPS Simulator

DejaVu is a 3D co-simulator platform for CPS and WSN,
designed for running and comparing multiple simulation
runs of a system in parallel. DejuVu is built using Cooja, a
multi-level WSN simulator for Contiki-based nodes, and Un-
real Engine 4 (UE4), a 3D game engine, providing a virtual
world to virtually deploy real code and simulate the inter-
actions between a CPS, the environment and virtual crowds.
DejaVu can be used in both indoor and outdoor settings.

DejaVu can efficiently record days of simulation data, in-
cluding data from the virtual environment, sensors and radio
network, enabling a full reconstruction of test scenarios for
later playback, review and analysis. Unlike video record-
ings, using this reconstruction, developers are able to move
through not only time but also space within recorded sim-
ulations, stopping, rewinding and fast-forwarding to review
recorded simulations from any point of view at any point in
time. To aid with traversing and analysing recordings, devel-
opers can select predefined events which DejaVu can watch
for; when detected, a checkpoint is logged, enabling review-
ers to at a glance see when events of interest have occurred
and instantly replay them. DejaVu can also compare record-
ings in real-time, overlaying and highlighting differences be-
tween the current simulation and previously recorded runs,
such as battery usage, radio utilisation/interference, move-
ment, as well as other sensor readings.

DejaVu simulations contain a number of nodes, which
each have a corresponding representation in both Cooja and
UEA4, virtual and physical, respectively. For each node:
Cooja simulates the software and radio components; UE4
simulates the physics for a nodes physical location and
movement within the environment, provides visual represen-
tations of sensor devices and simulates the sensor interac-
tions with the environment and people e.g., motion detection,
fire detection.

Whilst DejaVu is currently configured for use with Con-
tiki’s Cooja WSN simulator and UE4, DejaVu’s architecture
is agnostic and independent from these tools; in fact, it is
designed to coordinate and compose multiple different sim-
ulators and tools.

3.2 Time Control

When testing a CPS, time is a key factor: how long will
mote 1 last for, what happened at time ¢, how long did task
x take to complete, etc. Traditional methods for carrying out
tests in the real world or simulations only allow observers
to observe an event once live, or record an event from one
or more fixed perspectives and then view only exactly what
was in view when recording. This has obvious limits when
it comes to live and post-test analysis. If events or data are
missed, not recorded or out of view, then tests may need to be
re-run, data approximated or interpolated. DejaVu supports
multiple time control features, including pausing and fast-
forwarding live simulations, as well as recording simulations
for later playback and review.

During a live simulation time can be paused, giving de-
velopers more time to fully observe the current state of the
simulation, including moving around the 3D environment,

(a) Non-CPS-enhanced evacuation, with evacuees navigating to the closest

exit, possibly past danger zones. Zoom to fullscreen to appreciate visuali-
sation.

(b) A birdseye view of a fire-evacuation using visual diffing. Ghosts rep-
resent a previous run, whilst solid grey people represent the live run.
Coloured circles and lines represent node status and transmissions, re-
spectively.

Figure 1. A normal evacuation vs a CPS-enhanced evacuation with visual diffing support.

before resuming. Time can also be fast-forwarded, reducing
the real-world time for a simulation to be carried out. These
two time control features enable developers to become more
efficient and effective in carrying out live simulations.

To aid in post-simulation review and analysis, everything
within a simulation run can be recorded, saved and played
back later, including data on people, objects, sensors, net-
work traffic, etc. Unlike a video recording of a simulation
visualisation, which provides only one fixed viewpoint into a
simulation, DejaVu, using the recorded data, can completely
reconstruct the simulation, enabling developers to review the
simulation from any viewpoint at any point in time. This
gives developers the power to investigate the simulation for
events missed the first time or to simply change perspective
to better understand a phenomena from another angle. Sim-
ilarly, analytical filters and effects can also be retroactively
applied, providing new views into recorded simulations.

3.3 Visual Diffing Tools: Ghosts and Colour

Often when testing cyber-physical systems, either de-
ployed in the wild or in simulation, developers are attempting
to spot particular events, patterns or phenomena and compare
these to previous observations or a baseline.

For real world deployments, we are limited to what we
can see through visual interfaces, external physical outputs
or textual data logs. Similarly, by simply looking at the
cyber-physical system in situ it is very difficult to observe
activity and interaction between nodes. On top of this, try-
ing to compare different test runs visually is extremely hard,
without resorting to data logging and graphing.

Like in the real world, within the simulated virtual world
observing a system as-is can be just as difficult. However,
because it is virtual, we can also enhance our view of it,
super-imposing or overlaying information that would other-
wise hidden from view, such as radio traffic, node stats, or
sensor readings.

Taking this one step further, using a recording saved ear-
lier, the simulator can simultaneously run one or more simu-
lations in parallel, enabling observers to visually compare or
“diff” them directly. However, the difficulty arises in how to

represent the non-visual data in intuitive ways. Depending
on the type of data being compared, DejaVu presents diffs in
multiple ways, appropriate to the data type.

In a 3D world the simplest data to compare visually is po-
sition. When comparing two runs, a live and recorded run,
movable physical elements from both can be shown simul-
taneously. To aid in differentiating elements of each sim-
ulation, the recorded run’s elements are shown as ghosts,
translucent in appearance which don’t interact or collide with
objects in the live simulation and simply repeat state-by-state
what was recorded. This provides immediate visual clues to
where simulation runs differ, useful in cases where the mo-
bility of people or objects within it are of interest, such as
in a observing crowd movement in an evacuation scenario or
navigation decisions for domestic cleaning robots.

To further improve this, additional visual effects can be
used to filter out the visual noise. For example, when objects
and their ghost stay within a set distance of one another, their
colour is desaturated, however, when they breach this limit,
they are visibly highlighted in colour, making it clear which
objects are of interest.

For meta-data, which is not typically visible on the sur-
face of a node, such as node stats or sensor readings, we need
to be more creative and take advantage of the customisation
aspects of the 3D virtual world. We have created several
techniques to visually signal differences between a live and
recorded run: to simply alert the observer we can cause the
whole device to periodically illuminate a particular colour,
and simultaneously desaturate the others to further enhance
the observability of it e.g., a node flashes red to signify its
status is different between the two runs at the current time
slice; alternatively, the simulator can also illuminate the de-
vice using a gradient of colours, signifying the intensity of
the difference being observed between the two runs for a
particular device e.g., nodes illuminate on a range from yel-
low to red based on the power difference between two runs,
highlighting which nodes are affected the most. Other tech-
niques include changing the size of devices based on the size
of change, or shaking nodes.

159

3.4 Checkpoints: Needles in a Haystack

Utilising faster-than-real-time simulation, developers can
run and record simulations up to three times faster than real-
time. Thus, developers can run and review a virtual day
within 8 hours of real time. However, this poses a problem
for reviewing and analysing these long simulated runs, which
can be akin to looking for a needle in a haystack when trying
to find issues, key events or behaviours to analyse whether
or not a system is operating correctly.

To resolve this problem, in DejaVu developers can add
an event observer to the simulation, which detects when a
particular condition within the simulation is met. For ex-
ample, a developer may be interested when a node’s power
level drops below a threshold, or when a sensor is activated.
Upon triggering an event observer, the current snapshot is
tagged as a checkpoint with the event type. When the simu-
lation is replayed, the developer can then skip directly to any
of the event checkpoints that were generated, highlighting
snapshots of interest. Of course, developers can then choose
to investigate both in time and space around this checkpoint,
rewinding or fast-forwarding, as well as moving around the
virtual world.

3.5 Design
3.5.1 Co-simulator

DejaVu uses a publish-subscribe event system: in which a
plugin for each component publishes or subscribes to events
of interest. For example, the Unreal engine publishes sen-
sor positions in the 3D virtual world, to which Cooja sub-
scribes, thus updating it’s radio interference model with ev-
ery new position update. This approach enables the platform
to be flexible and modular, allowing multiple components to
publish and subscribe to information simultaneously, and for
new features, tools or extensions to be added easily.

3.5.2 Recording

In order to perform time-control functions, DejaVu
records both observable and unobservable behaviour within
a simulation, including physical information about an ob-
ject’s position, trajectory and rotation, as well as metadata
and state associated with any devices, sensors and the ra-
dio environment e.g., power usage, sensor readings and ra-
dio transmissions. Recording both observable and unobserv-
able information ensures replays can be fully reconstructed
or later modified to include new views or filters over the in-
formation and world.

To optimise the amount of memory used, DejaVu’s
snapshots only contain data about objects whose state has
changed since the last snapshot, thus ensuring memory is not
wasted recording duplicate data. However, even when us-
ing this method of recording, memory size still becomes an
issue when recording a large number of objects over an ex-
tended period of time, e.g., 60 people + 20-30 sensors over a
24hr period consumes 36GB, exceeding the RAM available
on even high-end machines.

Thus, to further reduce the memory used, DejaVu utilises
a segmented compression scheme, seen in figure 2. The con-
tinuous stream of snapshots are divided into segments of a
fixed size. Segments which are not currently being played
are compressed and written to storage. Segments are lazily

loaded back into memory and decompressed when neces-
sary. Using this scheme DejaVu saves a considerable amount
when storing these recordings, up to 30x improvement as
shown in figure 1. Using this technique, DejaVu can record
arbitrarily long simulations.

Current position

l

RAM 40MB 40MB 40MB

Compression ~ Decompression

Storage

4 oND
4 OAAD
4 oAND
4 OAAD
4 OAAD
4 oND
4 OAAD
4 oAND
4 OAAD
4 OAAD
4 oND
4 OAAD
4 OAAD
4 OAAD
4 OAAD
1.6MB

Figure 2. Segmented compression scheme employed by
DejaVu to reduce in-memory usage.

To prevent this scheme from negatively impacting the per-
formance when skipping back and forth through a record-
ing, segments before and after the current segment are pre-
emptively loaded. The pre-loading distance can be ad-
justed to balance the performance and storage needs. For
long-distance scrubbing, i.e., skipping hours or days, each
segment is time-stamped with the start- and end-times of
the snapshots held within, providing improved performance
when indexing into the correct segment.

Using this scheme, DejaVu is not only able to record
week-long simulations which would far surpass the avail-
able memory on even a high-end workstation, but can also
load multiple recording streams simultaneously, opening up
the possibility to replay, diff and compare multiple runs in
real-time.

Table 1. Size comparison between raw and compressed
snapshots saved to disk, varying in length.

Imin lhr 24hr
raw 40MB | 1.5GB 36GB
compressed | 1.6MB | 45.IMB | 1.1GB

3.5.3 Visual Diffing

DejaVu supports visual diffing a recorded simulation
against another recording or a live simulation. Visual dift-
ing utilises the simulation recording and replaying methods
described in the section 3.5.2, allowing more than one simu-
lation stream to be played back in memory simultaneously.

When replaying and diffing two simulations, each record-
able object (device, person or moveable object) in DejaVu
keeps track, within its log of snapshots, of a pointer to
the snapshot closest to the current replay time, updated at
each tick in the game engine. DejaVu runs the selected
diff on each relevant corresponding object in both simulation

(a) CPS-enhanced evacuation diffed with non-enhanced ghosts.
Evacuees are being directed to exits via safe routes.

(b) A person evacuating chooses two different paths in different runs
based on CPS assistance, the ghost shows the same person taking a
different route in a previous run.

Figure 3. Different visual diffing techniques for differentiating different aspects of simulation runs.

streams, which compares the current snapshot of each object
to determine the differences. Developers can also define the
difference threshold, specifying the closeness of the objects’
values before they are considered different. Currently, De-
jaVu supports a library of built in diffing functions, including
location, device sensor state (motion-, fire-detection), LED
state and radio usage.

The results from each diff function are then linked to dif-
ferent visual diffing features, e.g., instantaneous location dif-
ferences are shown through ghosting (figure 3a), long-term
location differences through visual tracks (figure 3b), dis-
crete differences through a colour change of the object and
continuous differences by a colour gradient. Multiple visual
features can also be applied to a single diff function, such
as using ghosting for showing location differences, but also
colouring the corresponding objects should they differ by a
developer-defined threshold, visually alerting the developer
to points of interest. New visual features can be added and
swapped in to experiment with visual techniques for repre-
senting differences. Similarly, we also envision the use of
sound alerts or notification overlays.

4 Case study: Fire Evacuation

To demonstrate DejaVu’s features we developed a case
study which focuses on the use of a cyber-physical enhanced
fire detection and evacuation system for large buildings with
multiple corridors and exit routes, such as offices or shop-
ping malls. Previous work [6, 2] has demonstrated the use
and benefit of utilising a 2D evacuation simulator to develop
new cyber-physical systems to enhance detection and evac-
uation, ensuring people are directed away from high-risk
areas, reducing congestion at critical paths and providing
detailed information for emergency crew to locate areas of
high-interest. Our case study utilises the algorithm from this
approach, to demonstrate and evaluate the unique simulation
features of DejaVu, including 3D analysis, playback, diffing
and checkpointing.

The algorithm, shown in pseudo-code form in figure 4,
runs on each node within the network. Each node first broad-
casts its distance to an exit; upon receiving a distance mes-

1 broadcast msg {ID, dist}
2 select:
3 waiton msg {ID, dist}:

4 routes[ID] = dist + 1

5 effectiveDist = min(dist+l, effectiveDist)
6 if changed:

7 broadcast msg {ID, effectiveDist}

8 waiton msg {ID, FIRE}:

9 routes[ID] = FIRE

10 effectiveDist = min_hazard(routes)

11 broadcast msg {ID, effectiveDist}

12 waiton sensor {FIRE}:

13 broadcast msg {ID, FIRE}

Figure 4. Pseudo-code for distributed evacuation CPS

sage, a node recalculates its shortest path to an exit; upon
receiving a fire message, a node removes the senders path
and recalculates the shortest distance to an exit taking into
consideration the distance to the closest exit via a path and
that path’s hazard risk based on its distance to the nearest
hazard; lastly, if a node receives a fire message from its own
sensor, it broadcasts the fire alert to the rest of the network.
Each node knows the direction of its nearest neighbours at
deployment time, thus, using light indicators, observers can
be directed along the calculated safe routes.

Using DejaVu, we interactively programmed the evacu-
ation system, testing and debugging our initial distributed
navigation algorithm using virtual agents to react to virtual
emergency fire evacuations. Using the replay and diffing fea-
tures, we were able to observe the differences that occur be-
tween runs of the evacuation. For our analysis we focused
on observing evacuation navigation between simulation runs,
i.e., agent movement in reaction to the algorithm direction.

Upon adapting the fire evacuation algorithm, we are able
to use DejaVu to visually observe how it affects evacuation
navigation. Before using the algorithm, evacuees would sim-
ply navigate to the exit closest to them, signposted by static
exit signs, as shown in figure 1a, unless they encounter a fire.

161

162

When the CPS is deployed, shown in figure 3a, evacuees are
guided to the nearest safe exit, which may be longer than
the shortest route, because of a fire hazard en route. Using
DejaVu, the difference between these two scenarios is clear,
in which the unaided scenario can be seen played out by the
ghosts, whilst the current CPS-enhanced scenario avoids di-
recting people towards the fire, using dynamic floor signs -
pointing the people towards the safe route.

Sensors are represented as white cuboids mounted along
the walls in figure 3a, detecting fire and relaying information
between themselves according to the algorithm. The dou-
ble coloured circles and lines signify radio traffic from one
node to another, whilst the smaller coloured rings reflect the
status LEDs of the node; these visual overlays expose more
information typically hidden from sight in the real-world.

S Performance

Along with providing visual and diffing benefits, DejaVu
also needs to be able to run and record at real-time or faster,
with a realistic number of devices, people and activity within
the environment, in order for development time to be signif-
icantly reduced when compared to traditional methods, such
as testbeds, simulations or pre-deployments.

For device simulation, Cooja was loaded with Cooja na-
tive motes, Contiki OS-based applications compiled to run
natively on the host machine, which offer a significant speed
boost of several orders of magnitude when compared to em-
ulated motes at the cost of hardware accurate simulation.

Within the game engine, maintaining a high frames-per-
second (FPS), above 30FPS, ensures a smooth and consistent
physics simulation within the virtual world. On top of this
when recording the simulation at faster than real-time, the
FPS in the simulated world is reduced proportionally, to 1/x,
where x is the speed up in the real-world. To ensure smooth
playback and physics in the replay, a high FPS is needed e.g.,
60FPS for x2 speed.

Performance tests were carried out with both UE4 and
Cooja co-located on the same machine of the following spec:
Xeon E5 1650 6Core with HT, 16GB RAM, 256GB SSD and
a sufficiently powerful (MSI GeForce GTX 970) graphics
card to support the game engine.

The performance test utilised the evacuation scenario de-
scribed previously, with 30 sensors deployed and 60 evac-
uees. When run the simulation maintained an average of
75FPS with Cooja maintaining a constant x1.0 real-time fac-
tor; which demonstrates DejaVu can support realistically
sized simulations with the use of large numbers of agents and
devices simultaneously, whilst maintaining a consistently
high FPS, ensuring fluid and efficient simulations.

To further improve simulation performance, simulations
can be recorded at a lower visual fidelity, choosing a lower
resolution, then increased when played back, improving the
visualisation without impacting the recorded simulation.

6 Conclusion and Future Work

In this paper we presented DejaVu, a 3D co-simulator
supporting full 3D reconstruction and visual diffing of live
and recorded CPS deployment simulations. We demon-
strated the significance and capabilities that visual diffing
features provide through an evacuation case study. DejaVu

enables developers to quickly analyse simulated runs, high-
lighting points of interest and differences between runs with
full time-control, seamlessly within the simulation itself.

In future we envision extending the support for filtering
and diffing, utilising event-stream processing to detect events
and complex patterns of events. With the recent develop-
ments in virtual reality (VR) and mixed-reality (MR) tech-
nologies, VR and MR will provide new and exciting ways
to support virtual testing and deployment, both in terms of
the human-in-the-loop scenarios for virtual experiment par-
ticipants, as well as for developers experimenting with de-
ployment layout and live analytics superimposed onto ob-
jects within the real environment.

7 References

[1] C.E. Agero, N. Koenig, I. Chen, H. Boyer, and et al. Inside the virtual
robotics challenge: Simulating real-time robotic disaster response.
IEEE Trans. on Automation Science and Engineering, 12(2):494-506,
April 2015.

[2] O.]J. Akinwande, H. Bi, and E. Gelenbe. Managing crowds in hazards
with dynamic grouping. IEEE Access, 3:1060-1070, 2015.

[3] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Usar-
sim: a robot simulator for research and education. In Robotics and
Automation, IEEE International Conf., pages 1400-1405, April 2007.

[4] 1. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfis-
terer. Wisebed: An open large-scale wireless sensor network testbed.
In Sensor Applications, Experimentation, and Logistics, volume 29,
pages 68—87. Springer Berlin Heidelberg, 2010.

[5] S.Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. E. Culler. Boss: Building operating system services.
In NSDI, volume 13, pages 443458, 2013.

[6] N. Dimakis, A. Filippoupolitis, and E. Gelenbe. Distributed building
evacuation simulator for smart emergency management. The Com-
puter Journal, 53(9):1384, 2010.

[7] S. Fekete, A. Kroller, S. Fischer, and D. Pfisterer. Shawn: The fast,
highly customizable sensor network simulator. In Fourth International
Conf. on Networked Sensing Systems, 2007.

[8] S. Kartakis, E. Abraham, and J. A. McCann. Waterbox: A testbed for
monitoring and controlling smart water networks. In Proceedings of
the 1st ACM International Workshop on Cyber-Physical Systems for
Smart Water Networks, CySWater’ 15, pages 8:1-8:6, New York, NY,
USA, 2015. ACM.

[9] B. Kim, A. Jarandikar, J. Shum, S. Shiraishi, and M. Yamaura. The
smt-based automatic road network generation in vehicle simulation
environment. In 2016 International Conf. on Embedded Software
(EMSOFT), pages 1-10, Oct 2016.

[10] N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), volume 3, pages 2149-2154 vol.3, Sept 2004.

[11] F. Leahy and N. Dulay. Arddn: Using 3d game engines in cyber-
physical simulations (tool paper). In Cyber Physical Systems. Design,
Modeling, and Evaluation: 6th International Workshop, CyPhy, Oc-
tober 6, 2016, pages 61-70. Springer International Publishing, 2017.

[12] P.Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scal-
able simulation of entire tinyos applications. In Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems,
SenSys "03, pages 126—-137, New York, NY, USA, 2003. ACM.

[13] A. Lscher, N. Tsiftes, T. Voigt, and V. Handziski. Efficient and flex-
ible sensornet checkpointing. In B. Krishnamachari, A. Murphy, and
N. Trigoni, editors, Wireless Sensor Networks, volume 8354, pages
50-65. Springer International Publishing, 2014.

[14] W. Mueller, M. Becker, A. Elfeky, and A. DiPasquale. Virtual proto-
typing of cyber-physical systems. In Design Automation Conf. (ASP-
DAC), 2012 17th Asia and South Pacific, pages 219-226, Jan 2012.

[15] E Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Local Computer Net-
works, Proceedings 2006 31st IEEE Conference on, pages 641-648,
Nov 2006.

