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Abstract
Battery-powered and energy-harvesting IEEE 802.15.4

nodes are subject to so-called denial-of-sleep attacks. Such
attacks generally aim at draining the energy of a victim
device. Especially, session key establishment schemes for
IEEE 802.15.4 security are susceptible to denial-of-sleep at-
tacks since injected requests for session key establishment
typically trigger energy-consuming processing and commu-
nication. Nevertheless, Krentz et al.’s Adaptive Key Es-
tablishment Scheme (AKES) for IEEE 802.15.4 security is
deemed to be resilient to denial-of-sleep attacks thanks to its
energy-efficient design and special defenses. However, thus
far, AKES’ resilience to denial-of-sleep attacks was presum-
ably never evaluated. In this paper, we make two contribu-
tions. First, we evaluate AKES’ resilience to denial-of-sleep
attacks both theoretically and empirically. We particularly
consider two kinds of denial-of-sleep attacks, namely HELLO
flood attacks, as well as what we introduce in this paper as
“yo-yo attacks”. Our key finding is that AKES’ denial-of-
sleep defenses require trade-offs between denial-of-sleep re-
silience and the speed at which AKES adapts to topology
changes. Second, to alleviate these trade-offs, we devise and
evaluate new denial-of-sleep defenses. Indeed, our newly-
devised denial-of-sleep defenses turn out to significantly ac-
celerate AKES’ reaction to topology changes, without incur-
ring much overhead nor sacrificing on security.
Categories and Subject Descriptors

C.2.1. [Network Architecture and Design]: Wireless
communication; C.2.0. [General]: Security and protection
General Terms

Security, Design.
Keywords

Internet of things, link layer security, key management,
denial-of-service, denial-of-sleep.

1 Introduction
IEEE 802.15.4 well established as a radio standard for im-

plementing Internet of things (IoT) applications [1]. Main
features of IEEE 802.15.4 are reliable mesh topologies,
cheap radio modules, and energy-efficient operation. Fur-
thermore, complementary protocols from the Internet Engi-
neering Task Force (IETF) enable the seamless integration of
IEEE 802.15.4 networks with IPv6 networks [13, 33].

Part of the IEEE 802.15.4 radio standard is IEEE 802.15.4
security, which specifies mechanisms for detecting injected
frames, encrypting the payload of frames, and detecting re-
played frames. Internally, to detect injected frames, IEEE
802.15.4 security adds message integrity codes (MICs) to
frames. These MICs are generated using a tweaked version
of Counter with CBC-MAC (CCM) [31]. Further, as CCM
requires nonces, IEEE 802.15.4 security adds an increment-
ing frame counter to each frame and derives a frame’s CCM
nonce therefrom. Also, IEEE 802.15.4 security uses CCM
for encrypting the payloads of frames. To detect replayed
frames, on the other hand, IEEE 802.15.4 security compares
the frame counter of an incoming frame with the one of the
last accepted frame from the sender. Yet, what is left unspec-
ified by IEEE 802.15.4 security is session key establishment.

Establishing session keys, rather than using predistributed
keys unchanged, is not strictly necessary. However, if pre-
distributed keys were used unchanged, each IEEE 802.15.4
node would have to persist all its anti-replay data of any pre-
vious interaction across reboots so as to prevent replay at-
tacks after reboots [16, 3]. This would be highly problematic
since the only non-volatile memory on most IEEE 802.15.4
nodes is flash memory, which is energy consuming, slow, as
well as prone to wear [29]. Moreover, after a reboot, a node’s
frame counter could not be reset as, otherwise, frames from
a rebooted node would be considered as replayed and CCM
nonces would reoccur [27, 16, 3]. Hence, Sastry et al. con-
sidered storing a node’s frame counter in non-volatile mem-
ory, too [27]. Establishing session keys, by contrast, frees
IEEE 802.15.4 nodes of storing anti-replay data and frame
counters across reboots [16, 27].

But, establishing session keys for IEEE 802.15.4 security
is not straightforward. In particular, one special requirement
that arises in this context is to resist so-called denial-of-sleep
attacks. Such attacks generally aim at expending the limited
energy reserves of battery-powered and energy-harvesting
devices [2]. Another special requirement that arises in this
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context is to not just establish session keys with neighboring
nodes once at start up, but also at runtime so as to support
mobile nodes and changing surroundings.

Krentz et al.’s Adaptive Key Establishment Scheme
(AKES) addresses these special requirements comparatively
well [16]. In fact, unlike public-key cryptography (PKC)-
and key distribution center (KDC)-based alternatives [25, 23,
24, 28, 22], AKES operates in a distributed manner and dis-
penses with PKC. This already makes AKES relatively re-
silient to denial-of-sleep attacks since requests for session
key establishment, called HELLOs in AKES, do neither trig-
ger energy-consuming processing nor communication. Ad-
ditionally, AKES starts to shed HELLOs if they arrive in
bursts. After all, AKES currently appears to be the only ses-
sion key establishment scheme for IEEE 802.15.4 security
that supports mobile nodes and changing surroundings. For
this, AKES deletes uncommunicative neighbors on the one
hand and discovers new neighbors by occasionally broad-
casting HELLOs on the other hand. Notably, to save energy,
AKES reduces the rate of HELLOs when the network topology
is stable and increases the rate of HELLOs when the network
topology is instable. However, an attacker may destabilize
a network’s topology and hence cause AKES to consume
more energy. As we will detail in Section 2.2, such attacks
manifest themselves in transient links, which is why we col-
lectively refer to them as “yo-yo attacks”. To some extent,
AKES mitigates yo-yo attacks by not removing uncommu-
nicative neighbors immediately, but only after a hysteresis.

In this paper, we make two contributions:

• First, we give the presumably first evaluation of AKES’
resilience to HELLO flood and yo-yo attacks. Regard-
ing HELLO flood attacks, we find AKES’ defense ef-
fective, but only when compromising on the speed at
which AKES establishes session keys. Similarly, as
for yo-yo attacks, we find AKES’ defense effective,
but only when compromising on the speed at which
AKES deletes uncommunicative neighbors. In sum,
AKES’ denial-of-sleep defenses require trade-offs be-
tween denial-of-sleep resilience and the speed at which
AKES adapts to topology changes.

• Second, to alleviate these trade-offs, we devise and
evaluate a new defense against HELLO flood attacks, as
well as a new defense against yo-yo attacks. As a re-
sult, our defense against HELLO flood attacks signifi-
cantly lowers delays to session key establishment, with-
out incurring much overhead nor sacrificing on secu-
rity. Likewise, our defense against yo-yo attacks signif-
icantly lowers delays to the deletion of uncommunica-
tive neighbors, without incurring much overhead nor
sacrificing on security.

The rest of this paper is organized as follows. Section
2 first provides background information on AKES. Section
3 then reviews AKES’ original denial-of-sleep defenses and
presents our newly-devised ones. Section 4 sketches our im-
plementation, followed by a comparative evaluation between
AKES’ original denial-of-sleep defenses and ours in Section
5. Section 6 discusses related work and Section 7 concludes.

2 Background on the Adaptive Key Establish-
ment Scheme (AKES)

This section (i) recaps the design of AKES, (ii) outlines
the operation of HELLO flood and yo-yo attacks on AKES,
and (iii) details AKES’ original denial-of-sleep defenses1.
2.1 Design

Rather than using KDCs or PKC, AKES derives session
keys from predistributed symmetric keys. This is done in the
course of a three-way handshake, whose details are shown
in Figure 1. Such a three-way handshake begins if a node A
broadcasts a HELLO, which contains a cryptographic random
number RA. Any receiver B that wishes to establish session
keys with A stores A as a tentative neighbor and, after a ran-
dom back off period Tbac < Mbac, replies with a HELLOACK.
This HELLOACK contains another cryptographic random num-
ber RB and a MIC. The MIC is generated using a temporary
pairwise key K′A,B that is derived from a predistributed sym-
metric key KA,B between A and B, as well as the two cryp-
tographic random numbers RA and RB. Upon receipt of this
HELLOACK, A checks the contained MIC and, if successful,
stores B as a permanent neighbor, and, lastly, acknowledges
with an ACK. This ACK also contains a MIC that is gener-
ated using the temporary pairwise key K′A,B between A and B
once more. As B receives an authentic ACK from a tentative
neighbor A, B turns A into a permanent neighbor. After this
three-way handshake, A and B store each other as permanent
neighbors and can use K′A,B as their pairwise session key.
2.1.1 Adaptation to Threat Models

Instead of, or in addition to, pairwise session keys, AKES
also supports the use of group session keys. Taking this op-
tion is appropriate if keys can not leak to an attacker. Under
this threat model, it also suffices to predistribute a network-
wide symmetric key, rather than pairwise symmetric keys. If
pairwise session keys are required on the other hand, but pre-
distributing pairwise symmetric keys is too memory consum-
ing, AKES can also be configured to use a more memory-
efficient scheme for predistributing pairwise symmetric keys,
such as Blom’s scheme [4]. This adaptability allows users to
select the most efficient key predistribution scheme for their
use case and enables different key predistribution schemes to
share a common code base [16].
2.1.2 Adaptation to Topology Changes

For scheduling the broadcasting of HELLOs, AKES adopts
the Trickle algorithm [20]. This algorithm takes three pa-
rameters:
Imin: the minimum interval duration

Imax: the maximum interval duration

k: the redundancy constant
and maintains three variables:
c: a counter

I: the current interval duration

t: an instant within the second half of the current interval
1Our description of AKES reflects the current open-source implementa-

tion of AKES, which slightly deviates from the corresponding publication
[16]. We list the differences between the open-source implementation and
the publication in Appendix A.
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At start up, Trickle sets c to 0, I to a random duration within
the range [Imin, Imax], and t to a random instant within the
range [ I

2 , I). Up until time t, Trickle increments c upon re-
ceipt of a consistent broadcast, where the notion of consis-
tent is left application specific. At time t, Trickle broadcasts
if and only if c < k. What Trickle broadcasts is also left ap-
plication specific. At the end of the current interval I, Trickle
starts a new interval with c = 0, I = min{I× 2, Imax}, and a
random instant t ∈ [ I

2 , I). A new interval also begins imme-
diately if a reset is issued - unless I already is at its min-
imum Imin. In the event of such resets, Trickle starts over
with c = 0, I = Imin, and a random instant t ∈ [ Imin

2 , Imin).
Altogether, Trickle reduces its broadcast rate exponentially
while consistency is achieved and increases its broadcast rate
when observing inconsistencies. Further energy is saved by
suppressing broadcasts if c < k.

AKES tailors Trickle to broadcast HELLOs as follows. By
default, AKES sets Imin = max{30s,2×Mbac + 1s}, Imax =
Imin×28, and k = 2. Setting Imin to max{30s,2×Mbac +1s}
avoids broadcasting another HELLO while still waiting for
HELLOACKs. As consistent broadcasts, AKES considers fresh
authentic HELLOs, as long as they do not originate from a per-
manent neighbor that already sent a fresh authentic HELLO
since the last time the receiver broadcasted a HELLO. Further-
more, AKES resets Trickle if max{b n

4c,1} permanent neigh-
bors were added during the current interval, where n is the
current number of permanent neighbors. Yet, when estab-
lishing a new session key with a permanent neighbor (which,
e.g., happens if a permanent neighbor reboots), AKES does
not count this permanent neighbor as new. To speed up join-
ing a network, AKES broadcasts one HELLO at start up, as
well as resets Trickle thereafter.

Besides, to detect whether a permanent neighbor got out
of range, AKES sends an UPDATE frame to permanent neigh-
bors that sent no fresh authentic frame for a critical period
of time Tlif. If such an uncommunicative neighbor does not
reply with an UPDATEACK after a couple of retransmissions,
AKES deletes that neighbor.

2.2 Denial-of-Sleep Vulnerabilities
2.2.1 HELLO Flood Attacks

In a HELLO flood attack, an attacker injects a HELLO [15],
thereby causing each receiver to store a tentative neigh-
bor with the address that is pretended to be the source ad-
dress of the HELLO. More severely, receivers will also send
a HELLOACK after a random back off period. This consumes
a good amount of energy, especially if the attacker does not
acknowledge the receipt of HELLOACKs because victim nodes
usually retransmit HELLOACKs a few times [17].
2.2.2 Yo-Yo Attacks

Apart from launching HELLO flood attacks, an attacker
can also make victim nodes consume more energy by car-
rying out what we refer to as yo-yo attacks. Yo-yo attacks
share the idea of destabilizing the topology of the victim
network so as to provoke additional HELLO, HELLOACK, and
ACK transmissions and receptions. Let us, e.g., consider an
external attacker, i.e., an attacker who possesses no key of
the victim network [10]. There appear to be exactly two
methods for him to launch a yo-yo attack. First, in a col-

lision attack, an external attacker jams certain frames so as
to cause bit errors and hence prevent their successful recep-
tion [35]. For example, if an attacker jams all frames ex-
cept HELLOs, HELLOACKs, and ACKs, AKES will delete per-
manent neighbors and later reestablish session keys. As a
result, victim nodes send and receive additional HELLOACKs
and ACKs. Moreover, victim nodes potentially reset Trickle
due to adding permanent neighbors. Thus, this example yo-
yo attack may ensue more HELLO transmissions and recep-
tions, too. Also, collision attacks open up plenty of other
strategies for launching yo-yo attacks, as we will detail in
Section 5.2. Second, in a hidden wormhole attack [5], an
external attacker tunnels frames between distant parts of the
victim network verbatim. In effect, this tricks distant nodes
to believe they were neighbors, thereby causing AKES to es-
tablish session keys between them and possibly reset Trickle,
too. Moreover, if we consider an internal attacker, i.e. an at-
tacker who possesses one or more keys of the victim network
[10], he may, in addition, be able to make AKES add perma-
nent neighbors by injecting HELLOs and authentic ACKs, or by
replying to HELLOs with authentic HELLOACKs. This provokes
additional HELLOACK and ACK transmissions and receptions,
and potentially Trickle resets, as well.
2.3 Denial-of-Sleep Defenses
2.3.1 Defense against HELLO Flood Attacks

AKES’ defense against HELLO flood attacks is twofold.
On the one hand, AKES dispenses with both a KDC and
PKC. Thus, unlike when using a KDC, requests for ses-
sion key establishment are not routed to the KDC, which
would aggravate HELLO flood attacks [11]. Likewise, us-
ing PKC would aggravate HELLO flood attacks since PKC in-
volves more computation than symmetric-key cryptography
[11]. On the other hand, as shown in Figure 1, AKES sheds
HELLOs in three occasions, namely (i) if the current number
of tentative neighbors reaches a limit Mten, (ii) if the sender
of a HELLO is already stored as a tentative neighbor, and (iii)
if there is no more random-access memory (RAM) for stor-
ing additional permanent neighbors available. In a follow-up
effort, which we will touch on in Section 6, Krentz et al. fur-
ther reduced AKES’ energy consumption under HELLO flood
attacks by shedding HELLOs already during reception [18].
2.3.2 Defense against Yo-Yo Attacks

Furthermore, AKES’ defense against yo-yo attacks is to
not delete uncommunicative permanent neighbors immedi-
ately, but only after a hysteresis Tlif. This limits the rate at
which AKES readds the same permanent neighbor and hence
rate-limits repeated yo-yo attacks.
3 Review and Revision of AKES’ Denial-of-

Sleep Defenses
In this section, we first argue that AKES requires trade-

offs between denial-of-sleep resilience and the speed at
which AKES adapts to topology changes. Subsequently, we
explain our newly-devised denial-of-sleep defenses, which
turn out to alleviate these trade-offs.
3.1 Review
3.1.1 Defense against HELLO Flood Attacks

Recall the following parameters of AKES:
Mten: the maximum number of tentative neighbors
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Mbac: the maximum back off period of HELLOACKs

Tack: the maximum waiting period for ACKs
Hence, by injecting HELLOs with random source addresses,
external attackers can cause AKES to send HELLOACKs at a
mean rate of

Mten
1
2 Mbac +Tack

(1)

, not counting retransmissions separately. Unfortunately,
this rate can not be tuned without affecting the speed at
which AKES reacts to topology changes at the same time.
Specifically, lowering Mten reduces the number of neighbors
that AKES can add in parallel. Increasing Mbac, on the other
hand, delays session key establishment. Lastly, increasing
Tack entails the following issue. Consider that a node A
broadcasted a HELLO and that session key establishment with
a neighbor B did not complete due to a missed HELLOACK or
ACK. Now, if A sends another HELLO before B may delete A
from its list of tentative neighbors, B will ignore A’s HELLO.

Moreover, internal attackers may be able to cause a vic-
tim node to send HELLOACKs at a higher rate than in Equation
(1). This is because, once an internal attacker obtained the
predistributed symmetric key between a victim node and an-
other node, he can (i) establish session keys with the victim
node and (ii) reestablish session keys with the victim node
over and over, with the only delay being Tbac < Mbac. Con-
cretely, if an internal attacker controls k of a victim node’s
n ≥ k permanent neighbors, the internal attacker can force
the victim node to send HELLOACKs at a mean rate of

k
1
2 Mbac

(2)

, not counting retransmissions separately. Thus, to also with-
stand internal attackers, Mbac has to be chosen long.
3.1.2 Defense against Yo-Yo Attacks

As for AKES’ defense against yo-yo attacks, a similar
conflict arises. While extending Tlif increases AKES’ re-
silience to yo-yo attacks, it also defers the deletion of un-
communicative permanent neighbors and hence the freeing
of allocated RAM. Moreover, if much RAM is allocated for
storing uncommunicative permanent neighbors, this can de-
prive AKES of establishing session keys with actual neigh-
bors.

Nevertheless, Tlif must be chosen long. This is because
an external attacker may set up multiple hidden wormholes
or launch collision attacks on several links. In effect, vic-
tim nodes will not always readd the same permanent neigh-
bor during a yo-yo attack, but different permanent neighbors
over and over. In such occasions, AKES will still issue many
Trickle resets, unless Tlif is chosen very long so that AKES
either abstains from readding any of a whole set of perma-
nent neighbors for long or quickly abstains from adding fur-
ther permanent neighbors because of running out of RAM.
3.2 Revision

Both of our newly-devised denial-of-sleep defenses are
based on leaky bucket counters (LBCs) [12]. The intuition
behind an LBC is a bucket with a hole in it, as shown in
Figure 2. Events drop into the bucket and increase its filling

bucket with capacity 

leakage rate 

events

Figure 2. Intuition behind leaky bucket counters

level. It is possible to associate different events with different
drop sizes. As the bucket has a hole, its filling level decreases
as long as there is water in it. Pressure is neglected so that the
filling level of the bucket decreases with a constant rate ρ. In
our use case, we want to avoid that the bucket overflows by
taking appropriate actions beforehand, i.e., before the filling
level exceeds the bucket’s capacity β.
3.2.1 Defense against HELLO Flood Attacks

Specifically, to defend against HELLO flood attacks, we
suggest that each node maintains an LBC LBCHELLOACK that
is defined as follows:
Capacity: Its capacity βHELLOACK corresponds to the maxi-

mum number of HELLOACKs that AKES may send in the
short run, not counting retransmissions separately.

Leakage rate: Its leakage rate ρHELLOACK corresponds to
the maximum rate at which AKES may send HELLOACKs
in the long run, not counting retransmissions separately.

Drop sizes: In the event that a HELLOACK is scheduled to
be sent, LBCHELLOACK is incremented by one. When
retransmitting a HELLOACK, however, LBCHELLOACK is
not incremented.

Overflow prevention: AKES shall shed an incoming
HELLO if LBCHELLOACK may overflow otherwise.

An immediate benefit of our LBC-based HELLO flood de-
fense is that its parameters are independent from other pa-
rameters of AKES. In fact, Mbac can now be shortened -
but should not be zeroed to avoid overwhelming senders
of HELLOs with HELLOACKs, as well as collisions among
HELLOACKs [37]. Likewise, Tack can now be minimized ac-
cording to what is the maximum waiting period between
the transmission of a HELLOACK and the reception of the
corresponding ACK. Finally, Mten can now be configured
independently from the aimed maximum rate of outgoing
HELLOACKs.

For example, consider we aim for a mean rate of 1
150 Hz

of outgoing HELLOACKs under continuous HELLO flood at-
tacks by external attackers, not counting retransmissions sep-
arately. According to Equation (1), an appropriate config-
uration of AKES’ original defense against HELLO flood at-
tacks is Mten = 5, Mbac = 5s, and Tack = 747.5s. How-
ever, in order to also withstand HELLO flood attacks by, at
least, one attacker-controlled permanent neighbor, choosing
Mten = 5, Mbac = 300s, and Tack = 600s is necessary ac-
cording to Equation (2). In either case, Tack is quite long,
which can lead to delays to session key establishment if
frame loss occurs, as described in Section 3.1. Moreover,
raising Mbac delays HELLOACKs and therefore session key es-
tablishment. By contrast, when using our defense against
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HELLO flood attacks, a parameter set that provides an equal
level of security is Mbac = 5s, Tack = 5s, βHELLOACK = 20,
and ρHELLOACK = 1

150 Hz. Apparently, AKES reacts much
faster to topology changes with these parameters. Beyond
that, our defense against HELLO flood attacks protects against
any number of attacker-controlled permanent neighbors. Ta-
ble 1 lists these parameter sets with IDs for future reference.
3.2.2 Defense against Yo-Yo Attacks

Similarly, to defend against yo-yo attacks, we suggest that
each node maintains two additional LBCs LBCHELLO and
LBCACK that are defined as follows:
Capacity: The capacity βHELLO of LBCHELLO corresponds

to the maximum number of HELLOs that AKES may
broadcast in the short run.

Leakage rate: The leakage rate ρHELLO of LBCHELLO cor-
responds to the maximum rate at which AKES may
broadcast HELLOs in the long run.

Drop sizes: In the event that AKES broadcasts a HELLO,
LBCHELLO is incremented by one. When retransmitting
a HELLO, however, LBCHELLO is not incremented.

Overflow prevention: AKES suppresses a HELLO if
LBCHELLO will overflow otherwise.

Capacity: The capacity βACK of LBCACK corresponds to
the maximum number of ACKs that AKES may send in
the short run, not counting retransmissions separately.

Leakage rate: The leakage rate ρACK of LBCACK corre-
sponds to the maximum rate at which AKES may send
ACKs in the long run, not counting retransmissions sep-
arately.

Drop sizes: In the event that AKES sends an ACK, LBCACK
is incremented by one. When retransmitting an ACK,
however, LBCACK is not incremented.

Overflow prevention: AKES shall shed an incoming
HELLOACK if LBCACK may overflow otherwise.

Analogously, an immediate benefit of our LBC-based de-
fense against yo-yo attacks is that Tlif may now be min-
imized. Conversely, when using AKES’ original defense
against yo-yo attacks, Tlif has to be chosen long so as to mit-
igate yo-yo attacks, as discussed in Section 3.1.2, and as is
also empirically confirmed in Section 5.2.

4 Lightweight Implementation
We integrated our newly-devised denial-of-sleep defenses

into the open-source implementation of AKES for the Con-
tiki operating system in two steps [8]. First, we added an ab-
stract data type for creating and managing LBCs to Contiki.
For implementing the leaking of LBCs, we decided to lazily
update the filling levels of LBCs upon enquiries. This not
only reduces the processing overhead, but also avoids wak-
ing up a node from sleep mode for updating filling levels.
Consequently, our implementation of LBCs is lightweight
in terms of energy consumption. Also, our implementation
of LBCs is lightweight in terms of RAM consumption. In
fact, the RAM consumption per LBC is merely 12 bytes
when using OpenMotes as target platform [30]. Second, we
added the pouring of drops and the prevention of overflows
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Figure 3. Sent HELLOACKs under continuous HELLO
flood attacks by an (a) external attacker and (b) internal
attacker

to AKES. Altogether, the addition of our denial-of-sleep de-
fenses causes an overhead in program memory of just 248
bytes when using OpenMotes as target platform.

5 Comparative Evaluation
Using our implementation, we empirically compared

AKES’ original denial-of-sleep defenses and ours concern-
ing effectiveness and responsiveness. In the following, we
report on these experiments.
5.1 Defenses against HELLO Flood Attacks
5.1.1 External Attackers

To compare the resilience to external attackers of AKES’
original defense against HELLO flood attacks and ours, the
following experiment was conducted. A Cooja simulation
with two nodes was run for three virtual hours. The first
node acted as an external attacker who continuously injected
HELLOs with random source addresses at the rate of 1Hz. The
second node acted as a victim and initially ran the original
version of AKES with Parameter Set 1 shown in Table 1.
This simulation was then rerun using (i) AKES’ original de-
fense against HELLO flood attacks with Parameter Set 2 and
(ii) our defense against HELLO flood attacks with Parameter
Set 3. In each run, the victim node logged its number of sent
HELLOACKs. Throughout, the frame loss was 0%.

Figure 3a shows the results. At the beginning, the vic-
tim node answers five HELLOs in a row when using AKES’
original defense against HELLO flood attacks. This is because
AKES’ original defense only comes into play as the number
of tentative reaches the threshold Mten = 5. Similarly, when
using our defense, the bucket initially is empty, thus causing
the victim node to answer the first βHELLOACK = 20 HELLOs.
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Table 1. Parameter sets
ID Imin Imax with Mten Mbac Tack Tlif βHELLO ρHELLO βHELLOACK ρHELLOACK

LBCs (= βACK) (= ρACK)
1 30s 128min × 5 5s 747.5s ∞ n/a n/a n/a n/a
2 601s 160min16s × 5 300s 600s ∞ n/a n/a n/a n/a
3 30s 128min X 5 5s 5s ∞ 10 1

300 Hz 20 1
150 Hz

4 30s 128min × 5 5s 747.5s 5min n/a n/a n/a n/a
5 30s 128min × 5 5s 747.5s 30min n/a n/a n/a n/a
6 30s 128min X 5 5s 5s 5min 10 1

300 Hz 20 1
150 Hz

Then, our defense gradually answers further HELLOs since
the bucket leaks at the rate of ρHELLOACK = 1

150 Hz. AKES’
original defense answers further HELLOs in bursts since all
initially stored tentative neighbors expire closely after one
another. As conjectured in Section 3, both defenses restrict
the rate of outgoing HELLOACKs to 1

150 Hz in the long run.

5.1.2 Internal Attackers
Next, to compare the resilience to one attacker-controlled

permanent neighbor of AKES’ original defense against
HELLO flood attacks and ours, the following experiment was
conducted. Again, a Cooja simulation was run for three vir-
tual hours in which one node acted as an attacker-controlled
node and another node acted as a victim. In the first run,
the victim node used AKES’ original defense against HELLO
flood attacks with Parameter Set 1. In the second run, the vic-
tim node used AKES’ original defense against HELLO flood
attacks with Parameter Set 2. In the third run, the victim
node used our defense against HELLO flood attacks with Pa-
rameter Set 3. During all runs, the victim node logged its
number of sent HELLOACKs, the frame loss was 0%, and the
attacker-controlled node operated as follows. At first, the
attacker-controlled node established session keys with the
victim node. Then, the attacker-controlled node broadcasted
inauthentic HELLOs at the rate of 1Hz. In the case that the
victim node replied with a HELLOACK, the attacker-controlled
node completed the three-way handshake by sending an au-
thentic ACK in response.

As shown in Figure 3b, the results differ from the previous
experiment as far as AKES’ original defense against HELLO
flood attacks is concerned. Particularly, when using Parame-
ter Set 1, the victim node ends up with 2993 sent HELLOACKs
after three virtual hours. This disastrous result arises because
the attacker-controlled node reestablishes session keys with
the victim node again and again with a short waiting period
in between. This waiting period takes 1

2 Mbac = 2.5s on aver-
age. Only when tuning Mbac appropriately, AKES’ original
defense against HELLO flood attacks approaches the aimed
maximum rate of one outgoing HELLOACK per 150s. How-
ever, if more than one attacker-controlled permanent neigh-
bors shows up, Mbac has to be extended further. On the
other hand, our defense against HELLO flood attacks protects
against any number of attacker-controlled permanent neigh-
bors, even without configuration changes.
5.1.3 Responsiveness

To compare AKES’ speed of establishing session keys
when using either AKES’ original defense against HELLO
flood attacks or ours, another set of Cooja simulations was

Figure 4. Network topology of most of our Cooja simula-
tions

run. Throughout, the topology shown in Figure 4 was used,
where every of the 25 nodes logged its number of permanent
neighbors and booted at a pseudo-random point in time dur-
ing the first 30 virtual minutes. In three successive runs over
one virtual hour, all nodes were configured to use (i) AKES’
original defense against HELLO flood attacks with Parame-
ter Set 1, (ii) AKES’ original defense against HELLO flood
attacks with Parameter Set 2, and (iii) our defense against
HELLO flood attacks with Parameter Set 3. These three runs
were also repeated with (i) a frame loss of 10% (instead of
0%) without enabling retransmissions and (ii) a frame loss
of 10% with three retransmissions at most.

Figure 5a shows the results with frame loss disabled.
Overall, the speed of adding permanent neighbors does not
differ greatly among the different HELLO flood defenses. Yet,
Parameter Set 2 lags behind since it delays HELLOACKs by
1
2 Mbac = 150s on average. In the case of a frame loss of
10%, AKES’ original defense against HELLO flood attacks
becomes noticeably slower, as shown in Figure 5b. This is
because of an issue we mentioned in Section 3.1 - if an ACK
or HELLOACK is missed, tentative neighbors are kept for long
if Tack is long, thus causing incoming HELLOs from tentative
neighbors to be ignored for a long period of time. A rem-
edy to this issue is to retransmit frames, as shown in Figure
5c. Despite this, Parameter Set 2 remains slower at adding
permanent neighbors because it delays HELLOACKs.

5.1.4 Discussion
AKES’ resilience to HELLO flood attacks comes at the cost

of extending both Tack and Mbac. Extending Tack, on the one
hand, may be acceptable if retransmissions are enabled, as
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Figure 5. Speed of adding permanent neighbors with (a) 0% frame loss, (b) 10% frame loss and without retransmissions,
and (c) 10% frame loss and with three retransmissions at most

shown in Figure 5c. Extending Mbac, on the other hand,
severely deteriorates the user experience because session key
establishment becomes very slow as a result. For compari-
son, our defense against HELLO flood attacks also protects
against HELLO flood attacks with short durations for Tack and
Mbac. Beyond that, our defense protects against any number
of attacker-controlled nodes and is easier to configure.

5.2 Defenses against Yo-Yo Attacks
5.2.1 Collision Attacks

To compare the effectiveness of AKES’ original defense
against yo-yo attacks and ours under collision attacks, a
Cooja simulation was set up. In each run, the network
shown in Figure 4 was simulated for 12 virtual hours, where
all 25 nodes booted at a random point in time during the
first 30 virtual minutes, and the frame loss was 0%. Dur-
ing each run, every node logged its number of sent HELLOs,
HELLOACKs, and ACKs. In the first run, no attack was
launched as a baseline for comparison. In the second run,
the nodes {1,2,3,6,7,8,11,12,13} solely received HELLOs,
HELLOACKs, and ACKs, thus simulating collision attacks on
any other kinds of frames. In the third run, the same set of
nodes did, in addition, not receive HELLOs from their per-
manent neighbors. This collision attack effectively disables
AKES’ suppression of redundant HELLOs. In the forth run,
if any of the nodes {1,2,3,6,7,8,11,12,13} had just reset
Trickle, i.e. I = Imin, it did not receive HELLOs at all. The
idea behind this collision attack is to delay session key es-
tablishment in order to cause multiple Trickle resets instead
of just one. Initially, all nodes used Parameter Set 4 and then
all four runs were repeated with Parameter Set 5 and 62.

Figure 6a through 6d shows the results. Let us first
look at the number of sent HELLOs. If no collision attack
is launched, relatively few HELLOs are sent, regardless of
the employed parameter set. This is because Trickle sus-

2Though it seems difficult for an attacker to prevent some nodes from
receiving a HELLO while letting it pass to others, this is possible, e.g., if the
victim network uses ContikiMAC. This is because ContikiMAC transmits
broadcasts as a strobe of frames, selected ones of which may be jammed
exactly when a certain node wakes up. Alternatively, an attacker may install
multiple jammers and locally jam HELLOs. In Section 6, we discuss the
feasibility of collision and hidden wormhole attacks in more detail.

pects that the network topology is stable and therefore re-
duces the rate of HELLOs. A lot more HELLOs are sent when
jamming all frames except HELLOs, HELLOACKs, and ACKs as
this causes AKES to delete permanent neighbors, reestab-
lish session keys, and potentially reset Trickle. Expectably,
AKES’ original defense against yo-yo attacks greatly miti-
gates such collision attacks if Tlif = 30min. This is due to
the fact that AKES then deletes uncommunicative perma-
nent neighbors only after Tlif = 30min. Conversely, when
configuring AKES more responsively by setting Tlif = 5min,
AKES’ original defense against yo-yo attacks protects much
worse. For comparison, although our defense against yo-yo
attacks also uses Tlif = 5min, it limits the rate of sent HELLOs
to ρHELLO = 1

300 Hz. Another attack strategy is to jam HELLOs
to permanent neighbors so as to abstain victim nodes from
suppressing HELLOs. Indeed, the number of sent HELLOs
increases under such collision attacks, at least when using
AKES’ original defense, as shown in Figure 6c. By con-
trast, our defense successfully limits the rate of sent HELLOs
to 1

300 Hz. Another level of aggravation is to jam HELLOs
to nodes that had just reset Trickle so as to cause multiple
Trickle resets instead of just one. Again, our defense limits
the rate of sent HELLOs under such kind of collision attacks
to 1

300 Hz, as shown in Figure 6d. A secondary repercussion
of yo-yo attacks is additional HELLOACK and ACK transmis-
sions and receptions. In this regard, our LBC-based restric-
tion on the rate of HELLOACKs also takes effect in this context.
AKES’ original defense against HELLO flood attacks, by con-
trast, fails to limit the rate of HELLOACKs to 1

150 Hz. For ex-
ample, in Figure 6b, the rate of answered HELLOs of node
7 in between hour 1 and 12 is 1

70.09 Hz for Parameter Set 4,
whereas it is 1

150.00 Hz for Parameter Set 6. In sum, AKES’
original defense against yo-yo attacks only prevents collision
attacks when extending Tlif to undesirable durations.
5.2.2 Hidden Wormhole Attacks

Next, to compare AKES’ original defense against yo-yo
attacks and ours under hidden wormhole attacks, the above
experiment was repeated with a modified topology, which is
shown in Figure 7. Accordingly, the nodes {3,4,5,9,10,15}
and {11,16,17,21,22,23} could communicate with each
other. However, the hidden wormhole exclusively tunneled
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Figure 6. Sent HELLOs, HELLOACKs, and ACKs per node after 12 virtual hours (a) without attacks, (b) when jamming
all frames except HELLOs, HELLOACKs, and ACKs, (c) when jamming HELLOs to permanent neighbors in addition, and
(d) when also jamming HELLOs to nodes that had just reset Trickle

Figure 7. Network topology with a hidden wormhole be-
tween {3,4,5,9,10,15} and {11,16,17,21,22,23}
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Figure 8. Sent HELLOs, HELLOACKs, and ACKs per node
after 12 virtual hours (a) in the presence of a hidden
wormhole and (b) if launching collision attacks in par-
allel
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Figure 9. Sent HELLOs, HELLOACKs, and ACKs per
node after 12 virtual hours in the face of four attacker-
controlled nodes

HELLOs, HELLOACKs, and ACKs and not other kinds of frames.
In the first run, no attacks other than the hidden wormhole
attack was launched. In the second run, this attack was exac-
erbated by combining it with collision attacks on the nodes
{1,2,3,6,7,8,11,12,13}. Specifically, like in the previous
experiment, each of these nodes only received (i) ACKs, (ii)
HELLOACKs, and (iii) HELLOs from non-permanent neighbors
if the node had not just reset Trickle.

Figure 8a and 8b show the results. Interestingly, the hid-
den wormhole attack turned out to be relatively benign. Fur-
thermore, the results suggest that such an attack only causes
the nodes that are connected via the hidden wormhole to send
more HELLOs, HELLOACKs, and ACKs, whereas collision at-
tacks also cause other nodes of the victim network to send
more HELLOs, HELLOACKs, and ACKs, as shown in Figure 6b
through 6d. That said, Figure 8b demonstrates that combin-
ing hidden wormhole attacks with collision attacks exacer-
bates both of these attacks.
5.2.3 Internal Attackers

Lastly, the protection of AKES’ original defense against
yo-yo attacks and ours against yo-yo attacks by internal at-
tackers was assessed as follows. Once more, the topology
shown in Figure 4 was used, where all 25 nodes booted at a
random point in time during the first 30 virtual minutes, and
the frame loss was 0%. This time, the nodes {13,14,18,19}
acted maliciously by (i) setting Imin = Imax = 30s, (ii) choos-
ing Mbac = Tack = 5s, (iii) not replying to UPDATEs, (iv) delet-
ing any new permanent neighbor right after session key es-
tablishment, (v) not limiting their number of sent HELLOs,
HELLOACKs, and ACKs, and (vi) not communicating among
themselves. That is, these nodes frequently sent authentic
HELLOs and completed three-way handshakes whenever pos-
sible by sending authentic HELLOACKs and ACKs. In three
successive runs over 12 virtual hours, the legitimate nodes
used Parameter Set 4 through 6 and logged their number of
sent HELLOs, HELLOACKs, and ACKs.

The results are shown in Figure 9. Unsurprisingly, our de-
fense against yo-yo attacks protects against yo-yo attacks by
internal attackers equally well as against yo-yo attacks by ex-
ternal attackers. Yet, surprisingly, as for AKES’ original de-
fense against yo-yo attacks, these results indicate that yo-yo
attacks by internal attackers are less effective than collision
attacks by external attackers. This is in contrast to HELLO

flood attacks, where internal attackers can cause worse reper-
cussions than external attackers when using AKES’ original
defense against HELLO flood attacks.

5.2.4 Discussion
AKES’ resilience to yo-yo attacks comes at the cost of

extending Tlif. As discussed in Section 3, extending Tlif may
deprive AKES from establishing session keys with actual
neighbors in situations where a lot of RAM is allocated for
storing uncommunicative permanent neighbors. Moreover,
an open question is how to choose Tlif so as to achieve a cer-
tain level of security. Conversely, our defense against yo-yo
attacks enables freeing allocated RAM quickly and can di-
rectly be configured to meet any required level of security.

6 Related Work
As explained in the introduction, establishing session

keys overcomes many issues related to frame counters. An
entirely different approach to avoid the mentioned problems
with frame counters is available for IEEE 802.15.4 networks
that use the timeslotted channel hopping (TSCH) media ac-
cess control (MAC) protocol of IEEE 802.15.4 [1]. The
idea there is to use the index of the timeslot in which a
frame is to be sent in lieu of a frame counter. This ren-
ders frame counters obsolete. However, TSCH’s mecha-
nisms for time synchronization are vulnerable to both inter-
nal and external attackers. In fact, Yang et al. pointed out
that attacker-controlled nodes can launch various attacks on
TSCH’s mechanisms for time synchronization [36]. More-
over, TSCH’s mechanisms for time synchronization do not
even withstand external attackers. For example, jamming
so-called enhanced beacons (EBs) constitutes a devastat-
ing denial-of-sleep attack on unsynchronized TSCH nodes
since this holds unsynchronized TSCH nodes in the energy-
consuming receive mode.

Karlof et al. identified HELLO flood attacks as a general
attack on wireless sensor and actuator networks [15]. Ac-
tually, many protocols for wireless sensor and actuator net-
works use some kind of HELLO messages to discover neigh-
boring nodes. Thus, a general attack on such protocols is
to inject or replay their HELLO messages. Such HELLO flood
attacks usually cause receivers to believe that they are in di-
rect communication range of the node that is pretended to be
the sender of the injected or replayed HELLO message [15]. In
the context of session key establishment, a basic countermea-
sure is to perform a three-way handshake so as to raise the
confidence of being in direct communication range of each
other [6, 21]. But, this countermeasure opens the denial-
of-sleep vulnerability that injected HELLOs trigger replies
such as HELLOACKs. To avoid replying to injected HELLOs,
Lim suggested authenticating HELLOs using hash chains [21].
However, when using his approach, it seems that attackers
can force victim nodes to perform many hash computations
by injecting HELLOs with late deployment intervals, which
would be a denial-of-sleep vulnerability, too. Alternatively,
AKES simply sheds HELLOs if they arrive in bursts. Further-
more, in a follow-up effort, Krentz et al. performed the shed-
ding of HELLOs already during reception, which further re-
duces the energy consumption of victim nodes under HELLO
flood attacks [18]. Our LBC-based defense against HELLO
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flood attacks advances the shedding of HELLOs by reducing
its incurred delays to session key establishment.

The feasibility of collision attacks on IEEE 802.15.4
frames was shown by Wood et al. and Wilhelm et al.. Wood
et al., on the one hand, configured an off-the-shelf radio chip
to issue interrupts upon detecting the synchronization header
(SHR) of an IEEE 802.15.4 frame [34]. Then, if an SHR in-
terrupt is issued, the radio chip was instructed to jam for a
short period of time. Wilhelm et al., on the other hand, im-
plemented collision attacks based on software-defined radio,
which minimizes the time between the analysis of incoming
radio traffic and the decision to jam [32]. Both these methods
seem applicable to launch collision attacks on AKES.

Related work on mitigating collision attacks focussed on
the short-term repercussion that jamming unicast frames en-
sues energy-consuming retransmissions [26, 17], rather than
long-term repercussions as we did. Ren et al., e.g., conceived
a reactive defense, which detects collision attacks and, upon
detection, temporarily switches to a low-power sleep mode
[26]. Unfortunately, they neglected that the transmissions
of neighboring nodes fail if a victim node is currently in a
low-power sleep mode. Thus, neighbors of a victim node
may also suspect a collision attack and enter a low-power
sleep mode, too. Consequently, a single collision attack may
paralyze a whole network if using Ren et al.’s reactive de-
fense. Besides, Krentz et al. proposed the secure phase-lock
optimization (SPLO) to mitigate collision attacks on Con-
tikiMAC [7, 17]. Originally, ContikiMAC strobed unicast
frames for long if no information about the wake-up time
of the intended receiver is available or if this information
seems to be outdated as unicast transmissions to him tend
to fail. Thus, a critical denial-of-sleep vulnerability of the
original version of ContikiMAC is that repeated collision
attacks on unicast frames to a certain receiver not only en-
sue retransmissions, but also longer strobes. SPLO miti-
gates this vulnerability by limiting the maximum duration of
a strobe of unicast frames throughout a session, regardless of
whether unicast transmissions tend to fail. Yet, SPLO does
not limit the maximum duration of strobes of HELLOACK and
ACK frames and necessitates using short values for Tlif. Ac-
cordingly, our LBC-based restriction on the number of out-
going HELLOACKs and ACKs complements SPLO very well.

The feasibility of hidden wormhole attacks was demon-
strated by Francillon et al. [9]. They achieved delays of
the order of nanoseconds by using cut-through forwarding,
i.e., by tunnelling incoming frames already during recep-
tion. Such kind of hidden wormhole attacks are hard to de-
tect using approaches based on measuring delays. Therefore,
more sophisticated methods for detecting hidden wormhole
attacks were considered. A recent idea is, e.g., to use channel
reciprocity for detecting hidden wormhole attacks, but cur-
rent channel reciprocity-based wormhole detection schemes
incur a high overhead and can be bypassed [19, 14]. As an
alternative way of dealing with hidden wormhole attacks, we
opted for mitigating the repercussions of such attacks.

7 Conclusions and Future Work
Denial-of-sleep attacks pose a severe threat to battery-

powered and energy-harvesting IEEE 802.15.4 nodes. While

AKES was designed to withstand denial-of-sleep attacks,
its denial-of-sleep defenses were presumably never evalu-
ated, yet. We have addressed this gap and have found
AKES’ denial-of-sleep defenses to successfully mitigate
HELLO flood attacks, as well as several kinds of yo-yo attacks,
provided one compromises on the speed at which AKES
adapts to topology changes. Furthermore, we have devised
new denial-of-sleep defenses for AKES and have shown our
defenses to accelerate AKES’ reaction to topology changes
at a low overhead and without security trade-offs. Neverthe-
less, the tension between responsiveness and denial-of-sleep
resilience is not entirely resolved by our defenses. Hence,
future work may try to reach even better responsiveness.
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A Open-Source Fixes to AKES
• Originally, AKES did not send a HELLO at start up, but only reset

Trickle at start up, which resulted in a slower user experience.

• Originally, replayed HELLOs were not discarded by receivers, which
caused unnecessary HELLOACKs to be sent.

• Originally, replayed HELLOACKs that pretend to originate from a per-
manent neighbor were recognized using frame counters. Yet, this led
to long deadlocks after reboots. Therefore, replayed HELLOACKs are
now recognized by checking whether the contained challenge is fresh.

• Originally, ACKs from expired tentative neighbors were not discarded.

• Originally, AKES only required Imin to be greater than Mbac, which
was insufficient to ensure not sending another HELLO while still wait-
ing for HELLOACKs. Now, AKES chooses Imin so that Imin

2 > Mbac.
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